Is Parallel Programming Hard, And, If So, What
Can You Do About It?

First Print Edition

Edited by:

Paul E. McKenney
Linux Technology Center
IBM Beaverton
paulmck @linux.vnet.ibm.com

April 3, 2014

mailto:paulmck@linux.vnet.ibm.com

Legal Statement

This work represents the views of the editor and the authors and does not necessarily
represent the view of their respective employers.

Trademarks:

* IBM, zSeries, and PowerPC are trademarks or registered trademarks of Interna-
tional Business Machines Corporation in the United States, other countries, or
both.

* Linux is a registered trademark of Linus Torvalds.

* 386 is a trademark of Intel Corporation or its subsidiaries in the United States,
other countries, or both.

* Other company, product, and service names may be trademarks or service marks
of such companies.

The non-source-code text and images in this document are provided under the terms
of the Creative Commons Attribution-Share Alike 3.0 United States license.! In brief,
you may use the contents of this document for any purpose, personal, commercial, or
otherwise, so long as attribution to the authors is maintained. Likewise, the document
may be modified, and derivative works and translations made available, so long as
such modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

Source code is covered by various versions of the GPL.> Some of this code is
GPLv2-only, as it derives from the Linux kernel, while other code is GPLv2-or-later.
See the comment headers of the individual source files within the CodeSamples directory
in the git archive® for the exact licenses. If you are unsure of the license for a given
code fragment, you should assume GPLv2-only.

Combined work © 2005-2014 by Paul E. McKenney.

'http://creativecommons.org/licenses/by-sa/3.0/us/
2http://www.gnu.org/licenses/gpl-2.0.html
3git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

ii

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 How To Use This Book 1
1.1 Roadmap 1
1.2 Quick Quizzes. 2
1.3 Alternativesto ThisBook 3
1.4 Sample SourceCode, 4
1.5 Whose BookIsThis? 4

2 Introduction 7
2.1 Historic Parallel Programming Difficulties 7
2.2 Parallel Programming Goals 9

22.1 Performance 9
222 Productivity 10
223 Generality L. 12
2.3 Alternatives to Parallel Programming 14
2.3.1 Multiple Instances of a Sequential Application 14
2.3.2 Use Existing Parallel Software 15
2.3.3 Performance Optimization 15
2.4 What Makes Parallel Programming Hard? 16
24.1 Work Partitioning oL 17
2.4.2 Parallel AccessControl 17
2.4.3 Resource Partitioning and Replication 18
244 Interacting With Hardware 18
2.4.5 Composite Capabilities 18
2.4.6 How Do Languages and Environments Assist With These Tasks? 19
25 Discussion. o e 19
3 Hardware and its Habits 21
31 Overview 21
3.1.1 PipelinedCPUs, 21
3.1.2 Memory References 23
3.1.3 Atomic Operations 24
3.14 Memory Barriers oL 24
3.1.5 CacheMisseso i it 25
3.1.6 I/OOperations 25
32 Overheads 26
3.2.1 Hardware System Architecture 26
322 Costsof Operations 28
3.3 Hardware Free Lunch?, 30

iii

33.1 3DIntegration 31

3.3.2 Novel Materials and Processes 32
3.3.3 Light,NotElectrons 32
3.3.4 Special-Purpose Accelerators 32
3.3.5 Existing Parallel Software 33
3.4 Software Design Implications 33
Tools of the Trade 35
4.1 Scripting Languages 35
4.2 POSIX Multiprocessingot 36
4.2.1 POSIX Process Creation and Destruction 36
4.2.2 POSIX Thread Creation and Destruction 38
423 POSIXLocking. 39
4.2.4 POSIX Reader-Writer Locking 42
4.3 Atomic Operations 45
4.4 Linux-Kernel Equivalents to POSIX Operations 46
4.5 The Right Tool for the Job: How to Choose? 48
Counting 49
5.1 Why Isn’t Concurrent Counting Trivial? 50
5.2 Statistical Counters Lo 52
52.1 Design 53
5.2.2 Array-Based Implementation 53
5.2.3 Eventually Consistent Implementation 54
5.2.4 Per-Thread-Variable-Based Implementation 56
525 Discussion 58
5.3 Approximate Limit Counters 58
53.1 Design 59
5.3.2 Simple Limit Counter Implementation 60
5.3.3 Simple Limit Counter Discussion 66
5.3.4 Approximate Limit Counter Implementation 67
5.3.5 Approximate Limit Counter Discussion 67
54 ExactLimitCounters, 67
5.4.1 Atomic Limit Counter Implementation 68
5.4.2 Atomic Limit Counter Discussion 72
5.4.3 Signal-Theft Limit Counter Design 74
5.4.4 Signal-Theft Limit Counter Implementation 75
5.4.5 Signal-Theft Limit Counter Discussion 79
5.5 Applying Specialized Parallel Counters 79
5.6 Parallel Counting Discussion 82
Partitioning and Synchronization Design 85
6.1 Partitioning Exercises oo 85
6.1.1 Dining Philosophers Problem 85
6.1.2 Double-EndedQueue 89
6.1.3 Partitioning Example Discussion 97
6.2 DesignCriteria e 97
6.3 Synchronization Granularity 100
6.3.1 Sequential Program L. 100
6.32 CodeLocking., 102

v

8

6.33 Datalocking 103

6.3.4 DataOwnership 104

6.3.5 Locking Granularity and Performance 107

6.4 Parallel Fastpath 110

6.4.1 Reader/Writer Locking 110

6.4.2 Hierarchical Locking 111

6.4.3 Resource Allocator Caches 111

6.5 Beyond Partitioningo 118

6.5.1 Work-Queue Parallel Maze Solver 118

6.5.2 Alternative Parallel Maze Solver 120

6.5.3 Performance ComparisonI 123

6.5.4 Alternative Sequential Maze Solver 125

6.5.5 Performance Comparison I 125

6.5.6 Future Directions and Conclusions 127

6.6 Partitioning, Parallelism, and Optimization 128

Locking 129

7.1 Staying Alive 130

7.1.1 Deadlock 130

7.1.2 Livelock and Starvation 139

7.1.3 Unfairness 141

7.14 Inefficiency 141

72 TypesofLocks 142

7.2.1 ExclusiveLocks 142

7.22 Reader-WriterLocks 142

7.2.3 Beyond Reader-Writer Locks 142

724 ScopedLocking 144

7.3 Locking ImplementationIssues 146
7.3.1 Sample Exclusive-Locking Implementation Based on Atomic

Exchange 146

7.3.2 Other Exclusive-Locking Implementations 147

7.4 Lock-Based Existence Guarantees 149

7.5 Locking: Heroor Villain? 151

7.5.1 Locking For Applications: Hero! 151

7.5.2 Locking For Parallel Libraries: Just Another Tool 151

7.5.3 Locking For Parallelizing Sequential Libraries: Villain! 155

7.6 Summary e e e e 157

Data Ownership 159

8.1 Multiple Processes 159

8.2 Partial Data Ownership and pthreads 160

8.3 Function Shipping 160

8.4 Designated Thread 160

8.5 Privatization 161

8.6 Other Uses of Data Ownership 161

9 Deferred Processing

9.1

9.2
9.3

Reference Counting

9.1.1 Implementation of Reference-Counting Categories

9.1.2 Hazard Pointers . . .

9.1.3 Linux Primitives Supporting Reference Counting
9.1.4 Counter Optimizations

Sequence Locks
Read-Copy Update (RCU) .
9.3.1 Introduction to RCU
9.3.2 RCU Fundamentals .
9.33 RCUUsage

9.3.4 RCU Linux-Kernel API
9.3.5 “Toy” RCU Implementations

9.3.6 RCU Exercises . . .

10 Data Structures

10.1
10.2

10.3

10.4

10.5
10.6

10.7

Motivating Application . . .
Partitionable Data Structures
10.2.1 Hash-Table Design .

10.2.2 Hash-Table Implementation
10.2.3 Hash-Table Performance

Read-Mostly Data Structures

10.3.1 RCU-Protected Hash Table Implementation
10.3.2 RCU-Protected Hash Table Performance
10.3.3 RCU-Protected Hash Table Discussion
Non-Partitionable Data Structures
10.4.1 Resizable Hash Table Design
10.4.2 Resizable Hash Table Implementation
10.4.3 Resizable Hash Table Discussion
10.4.4 Other Resizable Hash Tables

Other Data Structures
Micro-Optimization
10.6.1 Specialization
10.6.2 Bits and Bytes . . .

10.6.3 Hardware Considerations

Summary

11 Validation

11.1

11.2
11.3
11.4
11.5

Introduction

11.1.1 Where Do Bugs Come From?

11.1.2 RequiredMindset

11.1.4 The Open Source Way
Tracing
ASSErtions

Static Analysis
Code Review
11.5.1 Inspection.

vi

163
163
164
169
170
172
172
175
175
179
189
202
208
228
228
230

233
233
234
234
234
237
239
239
241
244
245
245
247
254
256
259
260
260
260
261
263

11.5.2 Walkthroughs
11.5.3 Self-Inspection
11.6 Probability and Heisenbugs
11.6.1 Statistics for Discrete Testing
11.6.2 Abusing Statistics for Discrete Testing
11.6.3 Statistics for Continuous Testing
11.6.4 Hunting Heisenbugs
11.7 Performance Estimation.
11.7.1 Benchmarking
11.72 Profiling
11.7.3 Differential Profiling
11.7.4 Microbenchmarking
11.7.5 Isolation
11.7.6 Detecting Interference
11.8 Summary e

12 Formal Verification

12.1 What are Promela and Spin?
12.2 Promela Example: Non-Atomic Increment
12.3 Promela Example: Atomic Increment
12.3.1 Combinatorial Explosion
124 HowtoUsePromela
12.4.1 Promela Peculiarities
12.42 Promela Coding Tricks
12.5 Promela Example: Locking
12.6 Promela Example: QRCU
12.6.1 Running the QRCU Example
12.6.2 How Many Readers and Updaters Are Really Needed?
12.6.3 Alternative Approach: Proof of Correctness
12.6.4 Alternative Approach: More Capable Tools
12.6.5 Alternative Approach: Divide and Conquer
12.7 Promela Parable: dynticks and Preemptible RCU
12.7.1 Introduction to Preemptible RCU and dynticks
12.7.2 Validating Preemptible RCU and dynticks
12.7.3 Lessons (Re)Learned
12.8 Simplicity Avoids Formal Verification
12.8.1 State Variables for Simplified Dynticks Interface
12.8.2 Entering and Leaving Dynticks-Idle Mode
12.8.3 NMIs From Dynticks-Idle Mode
12.8.4 Interrupts From Dynticks-IdleMode
12.8.5 Checking For Dynticks Quiescent States
12.8.6 Discussion
12.9 Formal Verification and Memory Ordering
12.9.1 AnatomyofalLitmusTest
12.9.2 What Does This Litmus Test Mean?
12.9.3 RunningalLitmusTest
1294 PPCMEM Discussion
12.10Summaryo e e e

vii

13 Putting It All Together 343

13.1 Counter Conundrums v 343
13.1.1 CountingUpdates 343
13.1.2 Counting Lookups, 343

132 RCURescues oo ittt is e et 344
13.2.1 RCU and Per-Thread-Variable-Based Statistical Counters . . . 344
13.2.2 RCU and Counters for Removable I/O Devices 347
1323 ArrayandLength 0oL 347
13.24 CorrelatedFields 349

13.3 HashingHassles 350
13.3.1 Correlated Data Elements 350
13.3.2 Update-Friendly Hash-Table Traversal 350

14 Advanced Synchronization 353

14.1 AvoidingLocks 353

142 Memory Barriers Lo 353
14.2.1 Memory Ordering and Memory Barriers 354
14.2.2 1If B Follows A, and C Follows B, Why Doesn’t C Follow A? . 355
14.2.3 Variables Can Have More Than One Value 356
1424 WhatCanYouTrust? 358
14.2.5 Review of Locking Implementations 363
142.6 AFew SimpleRules 364
14.2.7 Abstract Memory AccessModel 365
14.2.8 Device Operations v v v v v v 366
1429 Guarantees e 366
14.2.10 What Are Memory Barriers? 368
14.2.11 Locking Constraints 378
14.2.12 Memory-Barrier Examples 379
14.2.13 The Effects of the CPU Cache 381
14.2.14 Where Are Memory Barriers Needed? 383

14.3 Non-Blocking Synchronization 383
143.1 SimpleNBS 384
14.3.2 NBSDiscussion 385

15 Ease of Use 387

15.1 WhatisEasy? o 387

15.2 Rusty Scale for APIDesign 387

15.3 Shaving the Mandelbrot Set. 389

16 Conflicting Visions of the Future 393

16.1 The Future of CPU Technology Ain’t What it UsedtoBe 393
16.1.1 Uniprocessor Uber Alles 393
16.1.2 Multithreaded Mania 394
16.1.3 MoreoftheSame 395
16.1.4 Crash Dummies Slamming into the Memory Wall 396

16.2 Transactional Memory, 397
16.2.1 OutsideWorld 399
16.2.2 Process Modification 403
16.2.3 Synchronization 408
16.2.4 Discussion 412

16.3 Hardware Transactional Memory 414

16.3.1 HTM Benefits WRT to Locking 415
16.3.2 HTM Weaknesses WRT Locking 417
16.3.3 HTM Weaknesses WRT to Locking When Augmented 423
16.3.4 Where Does HTM BestFitIn? 426
16.3.5 Potential Game Changers 427
16.3.6 Conclusions 429
16.4 Functional Programming for Parallelism 430
Important Questions 433
A.1 What Does “After”” Mean? 433
A2 WhatTimeIsIt?, 436
Synchronization Primitives 439
B.1 Organization and Initialization 440
B.1.1 smp_init(): 440
B.2 Thread Creation, Destruction, and Control 440
B.2.1 create_thread() 440
B.22 smp_thread_id() 440
B.23 for each_thread() 441
B.2.4 for_each_running_thread() 441
B.25 wait_thread() 441
B.2.6 wait_all_threads() 441
B.277 ExampleUsage 441
B3 Locking 442
B.3.1 spin_lock_init() 442
B.3.2 spin_lock() 442
B.3.3 spin_trylock() 442
B.3.4 spin_unlock() 443
B.3.5 ExampleUsage 443
B.4 Per-Thread Variables 443
B.4.1 DEFINE_PER_THREAD() 443
B.4.2 DECLARE_PER_THREAD() 443
B4.3 wper_thread(). 443
B44 __get thread_var() 444
B.4.5 init_per_thread() 444
B4.6 UsageExample 444
B.5 Performance 444
Why Memory Barriers? 445
C.1 CacheStructure e 445
C.2 Cache-Coherence Protocols 447
C.2.1 MESIStates 448
C.2.2 MESIProtocol Messages 448
C.2.3 MESI State Diagram 449
C.2.4 MESIProtocol Example 451
C.3 Stores Resultin Unnecessary Stalls 451
C.3.1 StoreBuffers 452
C.3.2 Store Forwarding 453
C.3.3 Store Buffers and Memory Barriers 455

iX

C.4 Store Sequences Result in Unnecessary Stalls 457
C4.1 InvalidateQueues v 458
C.4.2 Invalidate Queues and Invalidate Acknowledge 458
C.4.3 Invalidate Queues and Memory Barriers 459

C.5 Read and Write Memory Barriers 461

C.6 Example Memory-Barrier Sequences 462
C.6.1 Ordering-Hostile Architecture 462
C.6.2 Examplel 463
C.63 Example2 464
C.6.4 Example3 464

C.7 Memory-Barrier Instructions For Specific CPUs 465
C7.1 Alpha e 467
C72 AMDO64 469
C.7.3 ARMVT7-A/R 469
CT74 TAG4 e 471
C.7.5 PA-RISC 472
C.7.6 POWER/PowerPC. 472
C.7.7 SPARCRMO, PSO,andTSO 473
CT7.8 x86 474
C.7.9 zSeries 475

C.8 Are Memory Barriers Forever? 475

C.9 Advice to Hardware Designers 476

Read-Copy Update Implementations 479

D.1 Sleepable RCU Implementation 479
D.1.1 SRCU Implementation Strategy 480
D.1.2 SRCUAPIandUsage 481
D.1.3 Implementation 484
D.1.4 SRCU Summary 488

D.2 Hierarchical RCU Overview 488
D.2.1 Review of RCU Fundamentals 489
D.2.2 Brief Overview of Classic RCU Implementation 489
D23 RCUDesiderata 490
D.2.4 Towards a More Scalable RCU Implementation 491
D.2.5 Towards a Greener RCU Implementation 494
D.2.6 StateMachine. o L. 495
D27 UseCaseso v i it et 498
D28 Testing 502
D29 Conclusion 506

D.3 Hierarchical RCU Code Walkthrough 507
D.3.1 Data Structures and Kernel Parameters 507
D.3.2 External Interfaces 516
D.3.3 Initialization L oo 522
D34 CPUHotplug 527
D.3.5 Miscellaneous Functions 532
D.3.6 Grace-Period-Detection Functions 533
D.3.7 Dyntick-Idle Functions 543
D.3.8 Forcing Quiescent States 547
D.3.9 CPU-Stall Detection 554
D.3.10 Possible Flaws and Changes 555

D4 Preemptible RCU 557

D.4.1 ConceptualRCU, . 557
D.4.2 Overview of Preemptible RCU Algorithm 559
D.4.3 Validation of Preemptible RCU 573

E Read-Copy Update in Linux 577
E.1 RCUUsage WithinLinux. 577
E2 RCUEvolution 577
E2.1 2627 LinuxKernel 577
E22 26.28LinuxKernel 577
E23 2629LinuxKernel 579
E24 2631 LinuxKernel 580
E25 2632LinuxKernel 580
E2.6 2633LinuxKernel 580
E2.7 2634 LinuxKernel 581
E2.8 2635LinuxKernel 581
E29 2636LinuxKernel 581
E.2.10 2.6.37 Linux Kernel 581
E.2.11 2638 LinuxKernel 582
E.2.12 2639 Linux Kernel 582
E.2.13 30LinuxKernel 582
E.2.14 3.1 LinuxKernel 583
E.2.15 32LinuxKernel 583
E.2.16 33 LinuxKernel 583
E.2.17 34 LinuxKernel 584
E.2.18 35LinuxKernel 584
E.2.19 36LinuxKernel 584
E.2.20 3. 7LinuxKernel 585
E.2.21 38LinuxKernel 585
E.2.22 39LinuxKernel 585
E.2.23 3.10Linux Kernel 585
E.2.24 3.11LinuxKernel 586
E.2.25 3.12LinuxKernel 586
E.2.26 3.13LinuxKernel 586
E.2.27 3.14Linux Kernel 587

F Answers to Quick Quizzes 589
F1 HowToUseThisBook 589
F2 Introduction 590
F3 HardwareanditsHabits. 596
F4 ToolsoftheTrade 600
ES5 Counting e 607
F.6 Partitioning and Synchronization Design 627
FE7 Locking e 634
F8 DataOwnership 644
F9 Deferred Processing 647
F.10 Data Structures e 673
F11 Validation 676
F.12 Formal Verification 684
F.13 Putting It All Together 691

X1

F.14 Advanced Synchronization 693
F15 EBaseof Use 698
F.16 Conflicting Visions of the Future 699
F.17 Important Questions. 702
F.18 Synchronization Primitives 703
F.19 Why Memory Barriers? 704
F.20 Read-Copy Update Implementations 709
G Glossary and Bibliography 729
H Credits 763
H.1 Authors 763
H.2 Reviewers e 763
H.3 Machine Owners 764
H.4 Original Publications 765
H.5 FigureCredits 765
H.6 OtherSupport 767

Xii

Chapter 1

How To Use This Book

The purpose of this book is to help you program shared-memory parallel machines
without risking your sanity.! We hope that this book’s design principles will help
you avoid at least some parallel-programming pitfalls. That said, you should think
of this book as a foundation on which to build, rather than as a completed cathedral.
Your mission, if you choose to accept, is to help make further progress in the exciting
field of parallel programming—progress that will in time render this book obsolete.
Parallel programming is not as hard as some say, and we hope that this book makes your
parallel-programming projects easier and more fun.

In short, where parallel programming once focused on science, research, and grand-
challenge projects, it is quickly becoming an engineering discipline. We therefore
examine specific parallel-programming tasks and describe how to approach them. In
some surprisingly common cases, they can even be automated.

This book is written in the hope that presenting the engineering discipline underlying
successful parallel-programming projects will free a new generation of parallel hackers
from the need to slowly and painstakingly reinvent old wheels, enabling them to instead
focus their energy and creativity on new frontiers. We sincerely hope that parallel
programming brings you at least as much fun, excitement, and challenge that it has
brought to us!

1.1 Roadmap

This book is a handbook of widely applicable and heavily used design techniques, rather
than a collection of optimal algorithms with tiny areas of applicability. You are currently
reading Chapter 1, but you knew that already. Chapter 2 gives a high-level overview of
parallel programming.

Chapter 3 introduces shared-memory parallel hardware. After all, it is difficult
to write good parallel code unless you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be out of date. We will nevertheless
do our best to keep up. Chapter 4 then provides a very brief overview of common shared-
memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one of the simplest problems
imaginable, namely counting. Because almost everyone has an excellent grasp of

! Or, perhaps more accurately, without much greater risk to your sanity than that incurred by non-parallel
programming. Which, come to think of it, might not be saying all that much.

1

counting, this chapter is able to delve into many important parallel-programming issues
without the distractions of more-typical computer-science problems. My impression is
that this chapter has seen the greatest use in parallel-programming coursework.

Chapter 6 introduces a number of design-level methods of addressing the issues
identified in Chapter 5. It turns out that it is important to address parallelism at the
design level when feasible: To paraphrase Dijkstra [Dij68], “retrofitted parallelism
considered grossly suboptimal” [McK12c].

The next three chapters examine three important approaches to synchronization.
Chapter 7 covers locking, which in 2014 is not only the workhorse of production-quality
parallel programming, but is also widely considered to be parallel programming’s worst
villain. Chapter 8 gives a brief overview of data ownership, an often overlooked but
remarkably pervasive and powerful approach. Finally, Chapter 9 introduces a number
of deferred-processing mechanisms, including reference counting, hazard pointers,
sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to hash tables, which are heavily
used due to their excellent partitionability, which (usually) leads to excellent perfor-
mance and scalability.

As many have learned to their sorrow, parallel programming without validation is a
sure path to abject failure. Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the fact, so Chapter 12 follows up
with a brief overview of a couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel programming problems.
The difficulty of these problems vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods, including memory barriers
and non-blocking synchronization. Chapter 15 follows up with some ease-of-use advice.
Finally, Chapter 16 looks at a few possible future directions, including shared-memory
parallel system design, software and hardware transactional memory, and functional
programming for parallelism.

This chapter is followed by a number of appendices. The most popular of these
appears to be Appendix C, which covers memory barriers. Appendix F contains the
answers to the infamous Quick Quizzes, which are discussed in the next section.

1.2 Quick Quizzes

“Quick quizzes” appear throughout this book, and the answers may be found in Ap-
pendix F starting on page 589. Some of them are based on material in which that quick
quiz appears, but others require you to think beyond that section, and, in some cases,
beyond the realm of current knowledge. As with most endeavors, what you get out of
this book is largely determined by what you are willing to put into it. Therefore, readers
who make a genuine effort to solve a quiz before looking at the answer find their effort
repaid handsomely with increased understanding of parallel programming.

Quick Quiz 1.1: Where are the answers to the Quick Quizzes found? H

Quick Quiz 1.2: Some of the Quick Quiz questions seem to be from the viewpoint
of the reader rather than the author. Is that really the intent?

Quick Quiz 1.3: These Quick Quizzes are just not my cup of tea. What can I do
about it? l

In short, if you need a deep understanding of the material, then you should invest
some time into answering the Quick Quizzes. Don’t get me wrong, passively reading

2

the material can be quite valuable, but gaining full problem-solving capability really
does require that you practice solving problems.

I learned this the hard way during coursework for my late-in-life Ph.D. I was
studying a familiar topic, and was surprised at how few of the chapter’s exercises I
could answer off the top of my head.? Forcing myself to answer the questions greatly
increased my retention of the material. So with these Quick Quizzes I am not asking
you to do anything that I have not been doing myself'!

1.3 Alternatives to This Book

As Knuth learned, if you want your book to be finite, it must be focused. This book
focuses on shared-memory parallel programming, with an emphasis on software that
lives near the bottom of the software stack, such as operating-system kernels, parallel
data-management systems, low-level libraries, and the like. The programming language
used by this book is C.

If you are interested in other aspects of parallelism, you might well be better served
by some other book. Fortunately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treatment of parallel programming,
you might like Herlihy’s and Shavit’s textbook [HS08]. This book starts with
an interesting combination of low-level primitives at high levels of abstraction
from the hardware, and works its way through locking and simple data structures
including lists, queues, hash tables, and counters, culminating with transactional
memory. Michael Scott’s textbook [Scol3] approaches similar material with
more of a software-engineering focus, and, as far as I know, is the first formally
published academic textbook to include a section devoted to RCU.

2. If you would like an academic treatment of parallel programming from a programming-
language-pragmatics viewpoint, you might be interested in the concurrency chap-
ter from Scott’s textbook [Sco06] on programming-language pragmatics.

3. If you are interested in an object-oriented patternist treatment of parallel pro-
gramming focussing on C++, you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00, BHS07]. Volume 4 in particular has some interesting chapters
applying this work to a warehouse application. The realism of this example is
attested to by the section entitled “Partitioning the Big Ball of Mud”, wherein the
problems inherent in parallelism often take a back seat to the problems inherent
in getting one’s head around a real-world application.

4. If you want to work with Linux-kernel device drivers, then Corbet’s, Rubini’s, and
Kroah-Hartman’s “Linux Device Drivers” [CRKHO05] is indespensible, as is the
Linux Weekly News web site (http://lwn.net /. There is a large number of
books and resources on the more general topic of Linux kernel internals.

5. If your primary focus is scientific and technical computing, and you prefer a
patternist approach, you might try Mattson et al.’s textbook [MSMOS5]. It covers
Java, C/C++, OpenMP, and MPI. Its patterns are admirably focused first on design,
then on implementation.

2 So I suppose that it was just as well that my professors refused to let me waive that class!

3

http://lwn.net/

git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
cd perfbook

make

evince perfbook.pdf & # Two-column version

make perfbook-1lc.pdf

evince perfbook-lc.pdf & # One-column version for e-readers

o Ul WN

Figure 1.1: Creating an Up-To-Date PDF

6. If your primary focus is scientific and technical computing, and you are interested
in GPUs, CUDA, and MPI, you might check out Norm Matloff’s “Programming
on Parallel Machines” [Mat13].

7. If you are interested in POSIX Threads, you might take a look at David R.
Butenhof’s book [But97].

8. If you are interested in C++11, you might like Anthony Williams’s “C++ Concur-
rency in Action: Practical Multithreading” [Wil12].

9. If you are interested in C++, but in a Windows environment, you might try Herb
Sutter’s “Effective Concurrency” series in Dr. Dobbs Journal [Sut08]. This series
does a reasonable job of presenting a commonsense approach to parallelism.

10. If you want to try out Intel Threading Building Blocks, then perhaps James
Reinders’s book [Rei07] is what you are looking for.

11. Those interested in learning how various types of multi-processor hardware cache
organizations affect the implementation of kernel internals should take a look at
Curt Schimmel’s classic treatment of this subject [Sch94].

12. Finally, those using Java might be well-served by Doug Lea’s textbooks [Lea97,
GPB*07].

However, if you are interested in principles of parallel design for low-level software,
especially software written in C, read on!
1.4 Sample Source Code
This book discusses its fair share of source code, and in many cases this source code

may be found in the CodeSamples directory of this book’s git tree. For example, on
UNIX systems, you should be able to type the following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls.c, which is called out in Sec-
tion 9.3.5. Other types of systems have well-known ways of locating files by filename.

1.5 Whose Book Is This?

As the cover says, the editor is one Paul E. McKenney. However, the editor does
accept contributions. These contributions can be in pretty much any form, with popular

4

git remote update

git checkout origin/master

make

evince perfbook.pdf & # Two-column version

make perfbook-1lc.pdf

evince perfbook-lc.pdf & # One-column version for e-readers

oUW N

Figure 1.2: Generating an Updated PDF

approaches including text emails, patches against the book’s I&TEX source, and even
git pull requests. Use whatever form works best for you.

To make contributions in the latter two forms, you will need the IATEX source to
the book, which may be found in the git archive at git://git.kernel.org/
pub/scm/linux/kernel/git/paulmck/perfbook.git, and git itself is
available as part of most mainstream Linux distributions. To create and display a current
I&TEX source tree of this book, use the list of Linux commands shown in Figure 1.1.
In some environments, the evince command that displays perfbook.pdf may
need to be replaced, for example, with acroread. The git clone command need
only be used the first time you create a PDF, subsequently, you can run the commands
shown in Figure 1.2 to pull in any updates and generate an updated PDF. The commands
in Figure 1.2 must be run within the perfbook directory created by the commands
shown in Figure 1.1.

PDFs of this book are sporadically postedathttp: //kernel.org/pub/linux/
kernel/people/paulmck/perfbook/perfbook.html andathttp://www.
rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and sending git pull requests is simi-
lar to that of the Linux kernel, which is documented in the Documentation/SubmittingPatches
file in the Linux source tree. One important requirement is that each patch (or commit,
in the case of a git pull request) must contain a valid Signed-off-by: line,
which has the following format:

Signed-off-by: My Name <myname@example.org>

Please see http://1lkml.org/1lkml/2007/1/15/219 for an example patch
containing a Signed-off-by: line.

It is important to note that the Signed—-off-by: line has a very specific meaning,
namely that you are certifying that:

1. The contribution was created in whole or in part by me and I have the right to
submit it under the open source license indicated in the file; or

2. The contribution is based upon previous work that, to the best of my knowledge,
is covered under an appropriate open source License and I have the right under
that license to submit that work with modifications, whether created in whole
or in part by me, under the same open source license (unless I am permitted to
submit under a different license), as indicated in the file; or

3. The contribution was provided directly to me by some other person who certified
(a), (b) or (¢) and I have not modified it.

4. The contribution is made free of any other party’s intellectual property claims or
rights.

git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/
http://lkml.org/lkml/2007/1/15/219

5. Tunderstand and agree that this project and the contribution are public and that
a record of the contribution (including all personal information I submit with
it, including my sign-off) is maintained indefinitely and may be redistributed
consistent with this project or the open source license(s) involved.

This is similar to the Developer’s Certificate of Origin (DCO) 1.1 used by the
Linux kernel. The only addition is item #4. This added item says that you wrote the
contribution yourself, as opposed to having (say) copied it from somewhere. If multiple
people authored a contribution, each should have a Signed-off-by: line.

You must use your real name: I unfortunately cannot accept pseudonymous or
anonymous contributions.

The language of this book is American English, however, the open-source nature
of this book permits translations, and I personally encourage them. The open-source
licenses covering this book additionally allow you to sell your translation, if you wish. I
do request that you send me a copy of the translation (hardcopy if available), but this
is a request made as a professional courtesy, and is not in any way a prerequisite to
the permission that you already have under the Creative Commons and GPL licenses.
Please see the FAQ. txt file in the source tree for a list of translations currently in
progress. I consider a translation effort to be “in progress” once at least one chapter has
been fully translated.

As noted at the beginning of this section, I am this book’s editor. However, if you
choose to contribute, it will be your book as well. With that, I offer you Chapter 2, our
introduction.

Chapter 2

Introduction

Parallel programming has earned a reputation as one of the most difficult areas a hacker
can tackle. Papers and textbooks warn of the perils of deadlock, livelock, race conditions,
non-determinism, Amdahl’s-Law limits to scaling, and excessive realtime latencies. And
these perils are quite real; we authors have accumulated uncounted years of experience
dealing with them, and all of the emotional scars, grey hairs, and hair loss that go with
such experiences.

However, new technologies that are difficult to use at introduction invariably become
easier over time. For example, the once-rare ability to drive a car is now commonplace
in many countries. This dramatic change came about for two basic reasons: (1) cars
became cheaper and more readily available, so that more people had the opportunity
to learn to drive, and (2) cars became easier to operate due to automatic transmissions,
automatic chokes, automatic starters, greatly improved reliability, and a host of other
technological improvements.

The same is true of a host of other technologies, including computers. It is no
longer necessary to operate a keypunch in order to program. Spreadsheets allow
most non-programmers to get results from their computers that would have required
a team of specialists a few decades ago. Perhaps the most compelling example is
web-surfing and content creation, which since the early 2000s has been easily done
by untrained, uneducated people using various now-commonplace social-networking
tools. As recently as 1968, such content creation was a far-out research project [Eng68],
described at the time as “like a UFO landing on the White House lawn”[Gri00].

Therefore, if you wish to argue that parallel programming will remain as difficult as
it is currently perceived by many to be, it is you who bears the burden of proof, keeping
in mind the many centuries of counter-examples in a variety of fields of endeavor.

2.1 Historic Parallel Programming Difficulties
As indicated by its title, this book takes a different approach. Rather than complain about
the difficulty of parallel programming, it instead examines the reasons why parallel

programming is difficult, and then works to help the reader to overcome these difficulties.
As will be seen, these difficulties have fallen into several categories, including:

1. The historic high cost and relative rarity of parallel systems.

7

2. The typical researcher’s and practitioner’s lack of experience with parallel sys-
tems.

3. The paucity of publicly accessible parallel code.
4. The lack of a widely understood engineering discipline of parallel programming.

5. The high overhead of communication relative to that of processing, even in tightly
coupled shared-memory computers.

Many of these historic difficulties are well on the way to being overcome. First, over
the past few decades, the cost of parallel systems has decreased from many multiples of
that of a house to a fraction of that of a bicycle, courtesy of Moore’s Law. Papers calling
out the advantages of multicore CPUs were published as early as 1996 [ONH96]. IBM
introduced simultaneous multi-threading into its high-end POWER family in 2000, and
multicore in 2001. Intel introduced hyperthreading into its commodity Pentium line
in November 2000, and both AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in late 2005. In fact, by 2008, it
was becoming difficult to find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By 2012, even smartphones were
starting to sport multiple CPUs.

Second, the advent of low-cost and readily available multicore systems means
that the once-rare experience of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems are now well within the budget of
students and hobbyists. We can therefore expect greatly increased levels of invention
and innovation surrounding parallel systems, and that increased familiarity will over
time make the once prohibitively expensive field of parallel programming much more
friendly and commonplace.

Third, in the 20" century, large systems of highly parallel software were almost
always closely guarded proprietary secrets. In happy contrast, the 21 century has
seen numerous open-source (and thus publicly available) parallel software projects,
including the Linux kernel [Tor03c], database systems [Pos08, MS08], and message-
passing systems [The08, UoCO08]. This book will draw primarily from the Linux kernel,
but will provide much material suitable for user-level applications.

Fourth, even though the large-scale parallel-programming projects of the 1980s and
1990s were almost all proprietary projects, these projects have seeded the community
with a cadre of developers who understand the engineering discipline required to
develop production-quality parallel code. A major purpose of this book is to present
this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of communication relative to that
of processing, remains largely in force. Although this difficulty has been receiving
increasing attention during the new millennium, according to Stephen Hawking, the
finite speed of light and the atomic nature of matter is likely to limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been in force since the late 1980s,
so that the aforementioned engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers are increasingly aware of
these issues, so perhaps future hardware will be more friendly to parallel software as
discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel programming has been known to be
exceedingly hard for many decades. You seem to be hinting that it is not so hard. What
sort of game are you playing? ll

However, even though parallel programming might not be as hard as is commonly
advertised, it is often more work than is sequential programming.

Quick Quiz 2.2: How could parallel programming ever be as easy as sequential
programming? W

It therefore makes sense to consider alternatives to parallel programming. However,
it is not possible to reasonably consider parallel-programming alternatives without
understanding parallel-programming goals. This topic is addressed in the next section.

2.2 Parallel Programming Goals

The three major goals of parallel programming (over and above those of sequential
programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Quick Quiz 2.3: Oh, really??? What about correctness, maintainability, robustness,
and soon? W

Quick Quiz 2.4: And if correctness, maintainability, and robustness don’t make the
list, why do productivity and generality? ll

Quick Quiz 2.5: Given that parallel programs are much harder to prove correct than
are sequential programs, again, shouldn’t correctness really be on the list? ll

Quick Quiz 2.6: What about just having fun? ll

Each of these goals is elaborated upon in the following sections.

2.2.1 Performance

Performance is the primary goal behind most parallel-programming effort. After all, if
performance is not a concern, why not do yourself a favor: Just write sequential code,
and be happy? It will very likely be easier and you will probably get done much more
quickly.

Quick Quiz 2.7: Are there no cases where parallel programming is about something
other than performance?

Note that “performance” is interpreted quite broadly here, including scalability
(performance per CPU) and efficiency (for example, performance per watt).

That said, the focus of performance has shifted from hardware to parallel software.
This change in focus is due to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the traditional single-threaded
performance increases. This can be seen in Figure 2.1.', which shows that writing
single-threaded code and simply waiting a year or two for the CPUs to catch up may
no longer be an option. Given the recent trends on the part of all major manufacturers

! This plot shows clock frequencies for newer CPUs theoretically capable of retiring one or more
instructions per clock, and MIPS (millions of instructions per second, usually from the old Dhrystone
benchmark) for older CPUs requiring multiple clocks to execute even the simplest instruction. The reason for
shifting between these two measures is that the newer CPUs’ ability to retire multiple instructions per clock is
typically limited by memory-system performance. Furthermore, the benchmarks commonly used on the older
CPUs are obsolete, and it is difficult to run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

10000 =TT T T T T 7
»
P A i
S 1000 | =
< i]
8 - -]
o 100 | %? =
g i o]
T 5
~ 10 - =
8 ++ i
) i #+ +]
) 1 + —
[a | _
G +
oq L— 1 1 1041]
Yo} o To) o Te} o Te} o Te}
N~ o] [e0) D (o] o o — ~—
(o)} (o)} (o)) (o)) (o)} o o o o
— — — -~ ~— Al (aV} A A
Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

towards multicore/multithreaded systems, parallelism is the way to go for those wanting
the avail themselves of the full performance of their systems.

Even so, the first goal is performance rather than scalability, especially given that the
easiest way to attain linear scalability is to reduce the performance of each CPU [TorO1].
Given a four-CPU system, which would you prefer? A program that provides 100
transactions per second on a single CPU, but does not scale at all? Or a program that
provides 10 transactions per second on a single CPU, but scales perfectly? The first
program seems like a better bet, though the answer might change if you happened to
have a 32-CPU system.

That said, just because you have multiple CPUs is not necessarily in and of itself
a reason to use them all, especially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel programming is primarily a
performance optimization, and, as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no reason to optimize, either by
parallelizing it or by applying any of a number of potential sequential optimizations.?
By the same token, if you are looking to apply parallelism as an optimization to a
sequential program, then you will need to compare parallel algorithms to the best
sequential algorithms. This may require some care, as far too many publications ignore
the sequential case when analyzing the performance of parallel algorithms.

2.2.2 Productivity

Quick Quiz 2.8: Why all this prattling on about non-technical issues??? And not just
any non-technical issue, but productivity of all things? Who cares? ll

Productivity has been becoming increasingly important in recent decades. To see
this, consider that the price of early computers was tens of millions of dollars at a time

2 Of course, if you are a hobbyist whose primary interest is writing parallel software, that is more than
enough reason to parallelize whatever software you are interested in.

10

100000 F— T T T I I # =
10000 F -
[S
Q 1000 g —
o -]
3 100 £ Hﬂ# -
N - { 1
& B :t+++]
= 10 F ::I- -
5 + H#+ + i
1 -
[+]

0.1]]]]]]]
0n O 1 O WV O W O W
N © ® ® O O O — +—
o O O O O O O o o
— ~— — — -~ A (aV] Al A

Year

Figure 2.2: MIPS per Die for Intel CPUs

when engineering salaries were but a few thousand dollars a year. If dedicating a team
of ten engineers to such a machine would improve its performance, even by only 10%,
then their salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-intact stored-program computer,
which was put into operation in 1949 [Mus04, Mel06]. Because this machine was built
before the transistor era, it was constructed of 2,000 vacuum tubes, ran with a clock
frequency of 1kHz, consumed 30kW of power, and weighed more than three metric tons.
Given that this machine had but 768 words of RAM, it is safe to say that it did not suffer
from the productivity issues that often plague today’s large-scale software projects.

Today, it would be quite difficult to purchase a machine with so little computing
power. Perhaps the closest equivalents are 8-bit embedded microprocessors exemplified
by the venerable Z80 [Wik08], but even the old Z80 had a CPU clock frequency more
than 1,000 times faster than the CSIRAC. The Z80 CPU had 8,500 transistors, and could
be purchased in 2008 for less than $2 US per unit in 1,000-unit quantities. In stark
contrast to the CSIRAC, software-development costs are anything but insignificant for
the Z80.

The CSIRAC and the Z80 are two points in a long-term trend, as can be seen in
Figure 2.2. This figure plots an approximation to computational power per die over the
past three decades, showing a consistent four-order-of-magnitude increase. Note that
the advent of multicore CPUs has permitted this increase to continue unabated despite
the clock-frequency wall encountered in 2003.

One of the inescapable consequences of the rapid decrease in the cost of hardware
is that software productivity becomes increasingly important. It is no longer sufficient
merely to make efficient use of the hardware: It is now necessary to make extremely
efficient use of software developers as well. This has long been the case for sequential
hardware, but parallel hardware has become a low-cost commodity only recently. There-
fore, only recently has high productivity become critically important when creating
parallel software.

Quick Quiz 2.9: Given how cheap parallel systems have become, how can anyone

11

afford to pay people to program them? Wl
Perhaps at one time, the sole purpose of parallel software was performance. Now,
however, productivity is gaining the spotlight.

2.2.3 Generality

One way to justify the high cost of developing parallel software is to strive for maximal
generality. All else being equal, the cost of a more-general software artifact can be
spread over more users than that of a less-general one.

Unfortunately, generality often comes at the cost of performance, productivity, or
both. To see this, consider the following popular parallel programming environments:

C/C++ “Locking Plus Threads” : This category, which includes POSIX Threads
(pthreads) [Ope97], Windows Threads, and numerous operating-system kernel
environments, offers excellent performance (at least within the confines of a
single SMP system) and also offers good generality. Pity about the relatively low
productivity.

Java : This general purpose and inherently multithreaded programming environment
is widely believed to offer much higher productivity than C or C++, courtesy of
the automatic garbage collector and the rich set of class libraries. However, its
performance, though greatly improved in the early 2000s, lags that of C and C++.

MPI : This Message Passing Interface [MPIO8] powers the largest scientific and
technical computing clusters in the world and offers unparalleled performance
and scalability. In theory, it is general purpose, but it is mainly used for scientific
and technical computing. Its productivity is believed by many to be even lower
than that of C/C++ “locking plus threads” environments.

OpenMP : This set of compiler directives can be used to parallelize loops. It is thus
quite specific to this task, and this specificity often limits its performance. It is,
however, much easier to use than MPI or C/C++ “locking plus threads.”

SQL : Structured Query Language [Int92] is specific to relational database queries.
However, its performance is quite good as measured by the Transaction Processing
Performance Council (TPC) benchmark results [Tra01]. Productivity is excellent;
in fact, this parallel programming environment enables people to make good
use of a large parallel system despite having little or no knowledge of parallel
programming concepts.

The nirvana of parallel programming environments, one that offers world-class
performance, productivity, and generality, simply does not yet exist. Until such a
nirvana appears, it will be necessary to make engineering tradeoffs among performance,
productivity, and generality. One such tradeoff is shown in Figure 2.3, which shows how
productivity becomes increasingly important at the upper layers of the system stack,
while performance and generality become increasingly important at the lower layers
of the system stack. The huge development costs incurred at the lower layers must
be spread over equally huge numbers of users (hence the importance of generality),
and performance lost in lower layers cannot easily be recovered further up the stack.
In the upper layers of the stack, there might be very few users for a given specific
application, in which case productivity concerns are paramount. This explains the

12

Productivity

Performance
Alelsuan

Figure 2.3: Software Layers and Performance, Productivity, and Generality

Special-Purpose
~<—Env Productive

for User 1

~)

Special-Purpose
Environment
Productlve for User 2
User 3 General- Purpose User 4
Environment

Special-Purpose Environment s
) pecial-Purpose
Productive for User 3 Environment

Productive for User 4
Figure 2.4: Tradeoff Between Productivity and Generality

tendency towards “bloatware” further up the stack: extra hardware is often cheaper than
the extra developers. This book is intended for developers working near the bottom of
the stack, where performance and generality are of great concern.

It is important to note that a tradeoff between productivity and generality has existed
for centuries in many fields. For but one example, a nailgun is more productive than
a hammer for driving nails, but in contrast to the nailgun, a hammer can be used for
many things besides driving nails. It should therefore be no surprise to see similar
tradeoffs appear in the field of parallel computing. This tradeoff is shown schematically
in Figure 2.4. Here, users 1, 2, 3, and 4 have specific jobs that they need the computer to
help them with. The most productive possible language or environment for a given user is
one that simply does that user’s job, without requiring any programming, configuration,
or other setup.

Quick Quiz 2.10: This is a ridiculously unachievable ideal! Why not focus on
something that is achievable in practice? B

Unfortunately, a system that does the job required by user 1 is unlikely to do

13

user 2’s job. In other words, the most productive languages and environments are
domain-specific, and thus by definition lacking generality.

Another option is to tailor a given programming language or environment to the
hardware system (for example, low-level languages such as assembly, C, C++, or Java)
or to some abstraction (for example, Haskell, Prolog, or Snobol), as is shown by the
circular region near the center of Figure 2.4. These languages can be considered to
be general in the sense that they are equally ill-suited to the jobs required by users 1,
2, 3, and 4. In other words, their generality is purchased at the expense of decreased
productivity when compared to domain-specific languages and environments. Worse yet,
a language that is tailored to a given abstraction is also likely to suffer from performance
and scalability problems unless and until someone figures out how to efficiently map
that abstraction to real hardware.

With the three often-conflicting parallel-programming goals of performance, pro-
ductivity, and generality in mind, it is now time to look into avoiding these conflicts by
considering alternatives to parallel programming.

2.3 Alternatives to Parallel Programming

In order to properly consider alternatives to parallel programming, you must first decide
on what exactly you expect the parallelism to do for you. As seen in Section 2.2, the
primary goals of parallel programming are performance, productivity, and generality.
Because this book is intended for developers working on performance-critical code near
the bottom of the software stack, the remainder of this section focuses primarily on
performance improvement.

It is important to keep in mind that parallelism is but one way to improve perfor-
mance. Other well-known approaches include the following, in roughly increasing order
of difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.

3. Apply performance optimization to the serial application.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential Application

Running multiple instances of a sequential application can allow you to do parallel
programming without actually doing parallel programming. There are a large number
of ways to approach this, depending on the structure of the application.

If your program is analyzing a large number of different scenarios, or is analyzing a
large number of independent data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis, then use any of a number of
scripting environments (for example the bash shell) to run a number of instances of
that sequential program in parallel. In some cases, this approach can be easily extended
to a cluster of machines.

This approach may seem like cheating, and in fact some denigrate such programs
as “embarrassingly parallel”. And in fact, this approach does have some potential

14

disadvantages, including increased memory consumption, waste of CPU cycles recom-
puting common intermediate results, and increased copying of data. However, it is
often extremely productive, garnering extreme performance gains with little or no added
effort.

2.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software environments that can present
a single-threaded programming environment, including relational databases [Dat82],
web-application servers, and map-reduce environments. For example, a common design
provides a separate program for each user, each of which generates SQL programs.
These per-user SQL programs are run concurrently against a common relational database,
which automatically runs the users’ queries concurrently. The per-user programs are
responsible only for the user interface, with the relational database taking full responsi-
bility for the difficult issues surrounding parallelism and persistence.

Taking this approach often sacrifices some performance, at least when compared
to carefully hand-coding a fully parallel application. However, such sacrifice is often
justified given the huge reduction in development effort required.

2.3.3 Performance Optimization

Up through the early 2000s, CPU performance was doubling every 18 months. In such
an environment, it is often much more important to create new functionality than to do
careful performance optimization. Now that Moore’s Law is “only” increasing transistor
density instead of increasing both transistor density and per-transistor performance, it
might be a good time to rethink the importance of performance optimization. After
all, new hardware generations no longer bring significant single-threaded performance
improvements. Furthermore, many performance optimizations can also conserve energy.

From this viewpoint, parallel programming is but another performance optimization,
albeit one that is becoming much more attractive as parallel systems become cheaper
and more readily available. However, it is wise to keep in mind that the speedup
available from parallelism is limited to roughly the number of CPUs. In contrast, the
speedup available from traditional single-threaded software optimizations can be much
larger. For example, replacing a long linked list with either a hash table or a search
tree can improve performance by many orders of magnitude. This highly optimized
single-threaded program might run much faster than its unoptimized parallel counterpart,
making parallelization unnecessary. Of course, a highly optimized parallel program
would be even better, give or take the added development effort required.

Furthermore, different programs might have different performance bottlenecks. For
example, if your program spends most of its time waiting on data from your disk drive,
using multiple CPUs will probably just increase the time wasted waiting for the disks.
In fact, if the program was reading from a single large file laid out sequentially on a
rotating disk, parallelizing your program might well make it a lot slower due to the
added seek overhead. You should instead optimize the data layout so that the file can be
smaller (thus faster to read), split the file into chunks which can be accessed in parallel
from different drives, cache frequently accessed data in main memory, or, if possible,
reduce the amount of data that must be read.

Quick Quiz 2.11: What other bottlenecks might prevent additional CPUs from
providing additional performance? ll

15

Ve

~
Performance Productivity

Generality

Figure 2.5: Categories of Tasks Required of Parallel Programmers

Parallelism can be a powerful optimization technique, but it is not the only such
technique, nor is it appropriate for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes as an optimization. Paral-
lelization has a reputation of being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

2.4 What Makes Parallel Programming Hard?

It is important to note that the difficulty of parallel programming is as much a human-
factors issue as it is a set of technical properties of the parallel programming problem.
We do need human beings to be able to tell parallel systems what to do, otherwise known
as programming. But parallel programming involves two-way communication, with
a program’s performance and scalability being the communication from the machine
to the human. In short, the human writes a program telling the computer what to do,
and the computer critiques this program via the resulting performance and scalability.
Therefore, appeals to abstractions or to mathematical analyses will often be of severely
limited utility.

In the Industrial Revolution, the interface between human and machine was eval-
uated by human-factor studies, then called time-and-motion studies. Although there
have been a few human-factor studies examining parallel programming [ENS05, ESO5,
HCS105, SS94], these studies have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given that the normal range of pro-
grammer productivity spans more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10% difference in productivity.
Although the multiple-order-of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive improvements tend to be based on a
long series of 10% improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks that parallel programmers must
undertake that are not required of sequential programmers. We can then evaluate how
well a given programming language or environment assists the developer with these
tasks. These tasks fall into the four categories shown in Figure 2.5, each of which is
covered in the following sections.

16

2.4.1 Work Partitioning

Work partitioning is absolutely required for parallel execution: if there is but one “glob”
of work, then it can be executed by at most one CPU at a time, which is by definition
sequential execution. However, partitioning the code requires great care. For example,
uneven partitioning can result in sequential execution once the small partitions have
completed [Amd67]. In less extreme cases, load balancing can be used to fully utilize
available hardware and restore performance and scalabilty.

Although partitioning can greatly improve performance and scalability, it can also
increase complexity. For example, partitioning can complicate handling of global errors
and events: A parallel program may need to carry out non-trivial synchronization in order
to safely process such global events. More generally, each partition requires some sort of
communication: After all, if a given thread did not communicate at all, it would have no
effect and would thus not need to be executed. However, because communication incurs
overhead, careless partitioning choices can result in severe performance degradation.

Furthermore, the number of concurrent threads must often be controlled, as each
such thread occupies common resources, for example, space in CPU caches. If too many
threads are permitted to execute concurrently, the CPU caches will overflow, resulting
in high cache miss rate, which in turn degrades performance. Conversely, large numbers
of threads are often required to overlap computation and I/O so as to fully utilize /O
devices.

Quick Quiz 2.12: Other than CPU cache capacity, what might require limiting the
number of concurrent threads? ll

Finally, permitting threads to execute concurrently greatly increases the program’s
state space, which can make the program difficult to understand and debug, degrading
productivity. All else being equal, smaller state spaces having more regular structure
are more easily understood, but this is a human-factors statement as much as it is a
technical or mathematical statement. Good parallel designs might have extremely large
state spaces, but nevertheless be easy to understand due to their regular structure, while
poor designs can be impenetrable despite having a comparatively small state space. The
best designs exploit embarrassing parallelism, or transform the problem to one having
an embarrassingly parallel solution. In either case, “embarrassingly parallel” is in fact
an embarrassment of riches. The current state of the art enumerates good designs; more
work is required to make more general judgments on state-space size and structure.

2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single thread has full access to all of
the program’s resources. These resources are most often in-memory data structures, but
can be CPUs, memory (including caches), I/O devices, computational accelerators, files,
and much else besides.

The first parallel-access-control issue is whether the form of the access to a given
resource depends on that resource’s location. For example, in many message-passing
environments, local-variable access is via expressions and assignments, while remote-
variable access uses an entirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query Language (SQL) [Int92], and
partitioned global address-space (PGAS) environments such as Universal Parallel C
(UPC) [EGCDO03] offer implicit access, while Message Passing Interface (MPI) [MPIOS]
offers explicit access because access to remote data requires explicit messaging.

17

The other parallel-access-control issue is how threads coordinate access to the re-
sources. This coordination is carried out by the very large number of synchronization
mechanisms provided by various parallel languages and environments, including mes-
sage passing, locking, transactions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-programming concerns such as
deadlock, livelock, and transaction rollback stem from this coordination. This frame-
work can be elaborated to include comparisons of these synchronization mechanisms,
for example locking vs. transactional memory [MMWO7], but such elaboration is be-
yond the scope of this section. (See Sections 16.2 and 16.3 for more information on
transactional memory.)

2.4.3 Resource Partitioning and Replication

The most effective parallel algorithms and systems exploit resource parallelism, so much
so that it is usually wise to begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly resources. The resource in
question is most frequently data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies or hardware threads), pages,
cache lines, instances of synchronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed “data locking” [BK85].

Resource partitioning is frequently application dependent. For example, numerical
applications frequently partition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive data structures and replicate
read-mostly data structures. Thus, a commercial application might assign the data for a
given customer to a given few computers out of a large cluster. An application might
statically partition data, or dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can be quite challenging for
complex multilinked data structures.

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the operating system, the compiler,
libraries, or other software-environment infrastructure. However, developers working
with novel hardware features and components will often need to work directly with such
hardware. In addition, direct access to the hardware can be required when squeezing
the last drop of performance out of a given system. In this case, the developer may
need to tailor or configure the application to the cache geometry, system topology, or
interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a resource which is subject to
partitioning or access control, as described in the previous sections.

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good engineering practice uses com-
posites of these capabilities. For example, the data-parallel approach first partitions the
data so as to minimize the need for inter-partition communication, partitions the code
accordingly, and finally maps data partitions and threads so as to maximize throughput
while minimizing inter-thread communication, as shown in Figure 2.6. The developer
can then consider each partition separately, greatly reducing the size of the relevant state
space, in turn increasing productivity. Even though some problems are non-partitionable,

18

Ve

~
Performance Productivity

’—ﬁ

Generality

Figure 2.6: Ordering of Parallel-Programming Tasks

clever transformations into forms permitting partitioning can sometimes greatly enhance
both performance and scalability [Met99].

2.4.6 How Do Languages and Environments Assist With These Tasks?

Although many environments require the developer to deal manually with these tasks,
there are long-standing environments that bring significant automation to bear. The
poster child for these environments is SQL, many implementations of which auto-
matically parallelize single large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all parallel programs, but that
of course does not necessarily mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of these four tasks as parallel
systems continue to become cheaper and more readily available.

Quick Quiz 2.13: Are there any other obstacles to parallel programming? H

2.5 Discussion

This section has given an overview of the difficulties with, goals of, and alternatives
to parallel programming. This overview was followed by a discussion of what can
make parallel programming hard, along with a high-level approach for dealing with
parallel programming’s difficulties. We are now ready to proceed to the next chapter,
which dives into the relevant properties of the parallel hardware underlying our parallel
software.

19

20

Chapter 3

Hardware and its Habits

Most people have an intuitive understanding that passing messages between systems is
considerably more expensive than performing simple calculations within the confines of
a single system. However, it is not always so clear that communicating among threads
within the confines of a single shared-memory system can also be quite expensive. This
chapter therefore looks at the cost of synchronization and communication within a
shared-memory system. These few pages can do no more than scratch the surface of
shared-memory parallel hardware design; readers desiring more detail would do well to
start with a recent edition of Hennessy and Patterson’s classic text [HP95].

Quick Quiz 3.1: Why should parallel programmers bother learning low-level prop-
erties of the hardware? Wouldn’t it be easier, better, and more general to remain at a
higher level of abstraction? l

3.1 Overview

Careless reading of computer-system specification sheets might lead one to believe that
CPU performance is a footrace on a clear track, as illustrated in Figure 3.1, where the
race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that approach the ideal shown
in Figure 3.1, the typical program more closely resembles an obstacle course than a
race track. This is because the internal architecture of CPUs has changed dramatically
over the past few decades, courtesy of Moore’s Law. These changes are described in the
following sections.

3.1.1 Pipelined CPUs

In the early 1980s, the typical microprocessor fetched an instruction, decoded it, and
executed it, typically taking ar least three clock cycles to complete one instruction
before proceeding to the next. In contrast, the CPU of the late 1990s and early 2000s
will be executing many instructions simultaneously, using a deep “pipeline” to control
the flow of instructions internally to the CPU. These modern hardware features can
greatly improve performance, as illustrated by Figure 3.2.

Achieving full performance with a CPU having a long pipeline requires highly
predictable control flow through the program. Suitable control flow can be provided
by a program that executes primarily in tight loops, for example, arithmetic on large

21

S CPU Benchimar k.
- “Trac kmeet

Figure 3.1: CPU Performance at its Best

matrices or vectors. The CPU can then correctly predict that the branch at the end of the
loop will be taken in almost all cases, allowing the pipeline to be kept full and the CPU
to execute at full speed.

However, suppose we have either a program with many loops with small loop
counts or an object-oriented program with many virtual objects that can reference many
different real objects, all with different implementations for frequently invoked member
functions. In these cases, it is difficult or even impossible for the CPU to predict where a
given branch might lead. The CPU must then either stall waiting for execution to proceed
far enough to know for certain where the branch will lead, or guess—and, in the face of

4.0 GHz clock, 20MB L
cache, 20 stage pipeline...

The only pipeline | need
is to cool of f that hot-
headed brat.

Figure 3.2: CPUs Old and New

22

Figure 3.3: CPU Meets a Pipeline Flush

programs with unpredictable control flow—frequently guess wrong. Wrong guesses can
be very expensive because the CPU must discard the results of any instructions that were
executed speculatively based on the wrong guess. In addition, regardless of whether the
CPU stalls or guesses, the pipeline will empty and have to be refilled, leading to stalls
that can drastically reduce performance, as fancifully depicted in Figure 3.3.
Unfortunately, pipeline flushes are not the only hazards in the obstacle course that
modern CPUs must run. The next section covers the hazards of referencing memory.

3.1.2 Memory References

In the 1980s, it often took less time for a microprocessor to load a value from memory
than it did to execute an instruction. In 2006, a microprocessor might be capable of exe-
cuting hundreds or even thousands of instructions in the time required to access memory.
This disparity is due to the fact that Moore’s Law has increased CPU performance at a
much greater rate than it has increased memory performance, in part due to the rate at
which memory sizes have grown. For example, a typical 1970s minicomputer might
have 4KB (yes, kilobytes, not megabytes, let alone gigabytes) of main memory, with
single-cycle access.! In 2008, CPU designers still can construct a 4KB memory with
single-cycle access, even on systems with multi-GHz clock frequencies. And in fact
they frequently do construct such memories, but they now call them “level-0 caches,”
and they are quite a bit bigger than 4KB.

Although the large caches found on modern microprocessors can do quite a bit to
help combat memory-access latencies, these caches require highly predictable data-
access patterns to successfully hide memory latencies. Unfortunately, common oper-
ations, such as traversing a linked list, have extremely unpredictable memory-access
patterns — after all, if the pattern was predictable, us software types would not bother
with the pointers, right?

!t is only fair to add that each of these single cycles consumed no less than 1.6 microseconds.

23

Figure 3.4: CPU Meets a Memory Reference

Therefore, as shown in Figure 3.4, memory references are often severe obstacles for
modern CPUs.

Thus far, we have only been considering obstacles that can arise during a given
CPU’s execution of single-threaded code. Multi-threading presents additional obstacles
to the CPU, as described in the following sections.

3.1.3 Atomic Operations

One such obstacle is atomic operations. The whole idea of an atomic operation in some
sense conflicts with the piece-at-a-time assembly-line operation of a CPU pipeline. To
hardware designers’ credit, modern CPUs use a number of extremely clever tricks to
make such operations look atomic even though they are in fact being executed piece-at-
a-time, but even so, there are cases where the pipeline must be delayed or even flushed
in order to permit a given atomic operation to complete correctly.

The resulting effect on performance is depicted in Figure 3.5.

Unfortunately, atomic operations usually apply only to single elements of data. Be-
cause many parallel algorithms require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide memory barriers. These memory
barriers also serve as performance-sapping obstacles, as described in the next section.

Quick Quiz 3.2: What types of machines would allow atomic operations on multiple
data elements? l

Fortunately, CPU designers have focused heavily on atomic operations, so that as of
early 2012 they have greately reduced (but by no means eliminated) their overhead.

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in Section 14.2 and Appendix C. In
the meantime, consider the following simple lock-based critical section:

24

Figure 3.5: CPU Meets an Atomic Operation

1 spin_lock (&mylock) ;
2 a=a+ 1;
3 spin_unlock (&mylock) ;

If the CPU were not constrained to execute these statements in the order shown, the
effect would be that the variable “a” would be incremented without the protection of
“mylock”, which would certainly defeat the purpose of acquiring it. To prevent such
destructive reordering, locking primitives contain either explicit or implicit memory
barriers. Because the whole purpose of these memory barriers is to prevent reorderings
that the CPU would otherwise undertake in order to increase performance, memory
barriers almost always reduce performance, as depicted in Figure 3.6.

As with atomic operations, CPU designers have been working hard to reduce
memory-barrier overhead, and have made substantial progress.

3.1.5 Cache Misses

An additional multi-threading obstacle to CPU performance is the “cache miss”. As
noted earlier, modern CPUs sport large caches in order to reduce the performance
penalty that would otherwise be incurred due to high memory latencies. However, these
caches are actually counter-productive for variables that are frequently shared among
CPUs. This is because when a given CPU wishes to modify the variable, it is most likely
the case that some other CPU has modified it recently. In this case, the variable will be
in that other CPU’s cache, but not in this CPU’s cache, which will therefore incur an
expensive cache miss (see Section C.1 for more detail). Such cache misses form a major
obstacle to CPU performance, as shown in Figure 3.7.

Quick Quiz 3.3: So have CPU designers also greatly reduced the overhead of cache
misses? ll

3.1.6 1/0O Operations

A cache miss can be thought of as a CPU-to-CPU I/O operation, and as such is one
of the cheapest I/O operations available. I/O operations involving networking, mass

25

Figure 3.6: CPU Meets a Memory Barrier

storage, or (worse yet) human beings pose much greater obstacles than the internal
obstacles called out in the prior sections, as illustrated by Figure 3.8.

This is one of the differences between shared-memory and distributed-system paral-
lelism: shared-memory parallel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program will typically incur the larger
network communication latencies. In both cases, the relevant latencies can be thought
of as a cost of communication—a cost that would be absent in a sequential program.
Therefore, the ratio between the overhead of the communication to that of the actual
work being performed is a key design parameter. A major goal of parallel hardware de-
sign is to reduce this ratio as needed to achieve the relevant performance and scalability
goals. In turn, as will be seen in Chapter 6, a major goal of parallel software design is to
reduce the frequency of expensive operations like communications cache misses.

Of course, it is one thing to say that a given operation is an obstacle, and quite
another to show that the operation is a significant obstacle. This distinction is discussed
in the following sections.

3.2 Overheads

This section presents actual overheads of the obstacles to performance listed out in the
previous section. However, it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.9 shows a rough schematic of an eight-core computer system. Each die has a
pair of CPU cores, each with its cache, as well as an interconnect allowing the pair of

26

CACHE- |
MISS |

TOLL
BOOTH

Figure 3.7: CPU Meets a Cache Miss

CPUs to communicate with each other. The system interconnect in the middle of the
diagram allows the four dies to communicate, and also connects them to main memory.

Data moves through this system in units of “cache lines”, which are power-of-two
fixed-size aligned blocks of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its registers, it must first load
the cacheline containing that variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also load the cacheline containing
that variable into its cache, but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-and-swap (CAS) operation on
a variable whose cacheline resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:

1. CPU 0 checks its local cache, and does not find the cacheline.

2. The request is forwarded to CPU 0’s and 1’s interconnect, which checks CPU 1’s
local cache, and does not find the cacheline.

3. The request is forwarded to the system interconnect, which checks with the other
three dies, learning that the cacheline is held by the die containing CPU 6 and 7.

4. The request is forwarded to CPU 6’s and 7’s interconnect, which checks both
CPUs’ caches, finding the value in CPU 7’s cache.

27

Please sty o7
e line. O\X\‘/
W is ver
Sl o U

Figure 3.8: CPU Waits for I/O Completion

5. CPU 7 forwards the cacheline to its interconnect, and also flushes the cacheline
from its cache.

. CPU 6’s and 7’s interconnect forwards the cacheline to the system interconnect.
. The system interconnect forwards the cacheline to CPU 0’s and 1’s interconnect.

. CPU 0’s and 1’s interconnect forwards the cacheline to CPU 0’s cache.

O o0 3 A

. CPU 0 can now perform the CAS operation on the value in its cache.

Quick Quiz 3.4: This is a simplified sequence of events? How could it possibly be
any more complex? Hl
Quick Quiz 3.5: Why is it necessary to flush the cacheline from CPU 7’s cache? B

3.2.2 Costs of Operations

The overheads of some common operations important to parallel programs are displayed
in Table 3.1. This system’s clock period rounds to 0.6ns. Although it is not unusual for
modern microprocessors to be able to retire multiple instructions per clock period, the
operations will be normalized to a full clock period in the third column, labeled “Ratio”.
The first thing to note about this table is the large values of many of the ratios.

The best-case CAS operation consumes almost forty nanoseconds, a duration more
than sixty times that of the clock period. Here, “best case” means that the same CPU
now performing the CAS operation on a given variable was the last CPU to operate
on this variable, so that the corresponding cache line is already held in that CPU’s
cache, Similarly, the best-case lock operation (a “round trip” pair consisting of a lock
acquisition followed by a lock release) consumes more than sixty nanoseconds, or

28

CPUO CPU 1 CPU 2 CPU 3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory |<—=| System Interconnect |<—=| Memory

zZ= N
Interconnect Interconnect
Cache Cache Cache Cache
CPU4 CPUS5 CPU®B6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8GHz Clock Period (8cm)

Figure 3.9: System Hardware Architecture

Operation | Cost(ns) | Ratio
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 3,000 5,000
Global Comms 130,000,000 | 216,000,000

Table 3.1: Performance of Synchronization Mechanisms on 4-CPU 1.8GHz AMD
Opteron 844 System

more than one hundred clock cycles. Again, “best case” means that the data structure
representing the lock is already in the cache belonging to the CPU acquiring and
releasing the lock. The lock operation is more expensive than CAS because it requires
two atomic operations on the lock data structure.

An operation that misses the cache consumes almost one hundred and forty nanosec-
onds, or more than two hundred clock cycles. The code used for this cache-miss
measurement passes the cache line back and forth between a pair of CPUs, so this cache
miss is satisfied not from memory, but rather from the other CPU’s cache. A CAS
operation, which must look at the old value of the variable as well as store a new value,
consumes over three hundred nanoseconds, or more than five hundred clock cycles.
Think about this a bit. In the time required to do one CAS operation, the CPU could
have executed more than five hundred normal instructions. This should demonstrate the
limitations not only of fine-grained locking, but of any other synchronization mechanism
relying on fine-grained global agreement.

Quick Quiz 3.6: Surely the hardware designers could be persuaded to improve
this situation! Why have they been content with such abysmal performance for these
single-instruction operations? ll

29

Figure 3.10: Hardware and Software: On Same Side

I/O operations are even more expensive. A high performance (and expensive!) com-
munications fabric, such as InfiniBand or any number of proprietary interconnects, has
a latency of roughly three microseconds, during which time five thousand instructions
might have been executed. Standards-based communications networks often require
some sort of protocol processing, which further increases the latency. Of course, ge-
ographic distance also increases latency, with the theoretical speed-of-light latency
around the world coming to roughly 130 milliseconds, or more than 200 million clock
cycles.

Quick Quiz 3.7: These numbers are insanely large! How can I possibly get my
head around them? M

In short, hardware and software engineers are really fighting on the same side, trying
to make computers go fast despite the best efforts of the laws of physics, as fancifully
depicted in Figure 3.10 where our data stream is trying its best to exceed the speed
of light. The next section discusses some of the things that the hardware engineers
might (or might not) be able to do. Software’s contribution to this fight is outlined in the
remaining chapters of this book.

3.3 Hardware Free Lunch?

The major reason that concurrency has been receiving so much focus over the past few
years is the end of Moore’s-Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 2.1 on page 10. This section briefly surveys a
few ways that hardware designers might be able to bring back some form of the “free
lunch”.

However, the preceding section presented some substantial hardware obstacles to
exploiting concurrency. One severe physical limitation that hardware designers face is
the finite speed of light. As noted in Figure 3.9 on page 29, light can travel only about
an 8-centimeters round trip in a vacuum during the duration of a 1.8 GHz clock period.
This distance drops to about 3 centimeters for a 5 GHz clock. Both of these distances
are relatively small compared to the size of a modern computer system.

To make matters even worse, electrons in silicon move from three to thirty times
more slowly than does light in a vacuum, and common clocked logic constructs run still
more slowly, for example, a memory reference may need to wait for a local cache lookup
to complete before the request may be passed on to the rest of the system. Furthermore,

30

70 uy

3cm 1.5¢cm
Figure 3.11: Latency Benefit of 3D Integration

relatively low speed and high power drivers are required to move electrical signals
from one silicon die to another, for example, to communicate between a CPU and main
memory.

Quick Quiz 3.8: But individual electrons don’t move anywhere near that fast, even
in conductors!!! The electron drift velocity in a conductor under the low voltages found
in semiconductors is on the order of only one millimeter per second. What gives??? il

There are nevertheless some technologies (both hardware and software) that might
help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electrons,

4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sections.

3.3.1 3D Integration

3-dimensional integration (3D]) is the practice of bonding very thin silicon dies to
each other in a vertical stack. This practice provides potential benefits, but also poses
significant fabrication challenges [KniO8].

Perhaps the most important benefit of 3DI is decreased path length through the
system, as shown in Figure 3.11. A 3-centimeter silicon die is replaced with a stack of
four 1.5-centimeter dies, in theory decreasing the maximum path through the system by
a factor of two, keeping in mind that each layer is quite thin. In addition, given proper
attention to design and placement, long horizontal electrical connections (which are
both slow and power hungry) can be replaced by short vertical electrical connections,
which are both faster and more power efficient.

However, delays due to levels of clocked logic will not be decreased by 3D in-
tegration, and significant manufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach production while still delivering on
its promise. The heat-dissipation problems might be solved using semi