Stream: Independent Submission

RFC: 9924
Category: Informational
Published: February 2026
ISSN: 2070-1721
Authors:
Y. Lim M. Park M. Budagavi R. Joshi
Samsung Electronics ~ Samsung Electronics =~ Samsung Electronics =~ Samsung Electronics
K. Choi
Samsung Electronics

RFC 9924
Advanced Professional Video

Abstract

This document describes the bitstream format of Advanced Professional Video (APV) and its
decoding process. APV is a professional video codec providing visually lossless compression
mainly for recording and post production.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9924.

Copyright Notice

Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

Lim, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9924
https://www.rfc-editor.org/info/rfc9924
https://trustee.ietf.org/license-info

RFC 9924 APV February 2026

Table of Contents

1. Introduction 5
2. Terms 6
2.1. Terms and Definitions 6
2.2. Abbreviated Terms 8

3. Conventions Used in This Document 8
3.1. General 8
3.2. Operators 8
3.2.1. Arithmetic Operators 8
3.2.2. Bitwise Operators 9

3.3. Range Notation 9
3.3.1. Order of Operations Precedence 9

3.4. Variables, Syntax Elements, and Tables 10
3.5. Processes 11

4. Formats and Processes Used in This Document 12
4.1. Bitstream Formats 12
4.2. Source, Decoded, and Output Frame Formats 12
4.3. Partitioning of a Frame 14
4.3.1. Partitioning of a Frame into Tiles 14
4.3.2. Spatial or Component-Wise Partitioning 15

4.4. Scanning Processes 15
4.4.1. Zig-Zag Scan 15
4.4.2. Inverse Scan 17

5. Syntax and Semantics 17
5.1. Method of Specifying Syntax 17
5.2. Syntax Functions and Descriptors 18
5.2.1. byte_aligned() 18
5.2.2. more_data_in_tile() 18

Lim, et al. Informational Page 2

RFC 9924 APV February 2026

5.2.3. next_bits(n) 18
5.2.4. read_bits(n) 18
5.2.5. Syntax Element Processing Functions 18
5.3. List of Syntax and Semantics 19
5.3.1. Access Unit 19
5.3.2. Primitive Bitstream Unit 19
5.3.3. Primitive Bitstream Unit Header 20
5.3.4. Frame 21
5.3.5. Frame Header 22
5.3.6. Frame Information 23
5.3.7. Quantization Matrix 25
5.3.8. Tile Info 25
5.3.9. Access Unit Information 26
5.3.10. Metadata 27
5.3.11. Filler 28
5.3.12. Tile 29
5.3.13. Tile header 29
5.3.14. Tile Data 30
5.3.15. Macroblock Layer 31
5.3.16. AC Coefficient Coding 32
5.3.17. Byte Alignment 34

6. Decoding Process 34
6.1. MB Decoding Process 35
6.2. Block Reconstruction Process 36
6.3. Scaling and Transformation Process 36
6.3.1. Scaling Process for Transform Coefficients 37
6.3.2. Process for Scaled Transform Coefficients 38

7. Parsing Process 39
7.1. Process for Syntax Element Type h(v) 39
7.1.1. Process for abs_dc_coeff_diff 39

Lim, et al. Informational Page 3

RFC 9924 APV February 2026

7.1.2. Process for coeff zero_run 40
7.1.3. Process for abs_ac_coeff _minus1 40
7.1.4. Process for Variable-Length Codes 40
7.2. Codeword Generation Process for h(v) (Informative) 41
7.2.1. Process for abs_dc_coeff_diff 41
7.2.2. Process for coeff_zero_run 42
7.2.3. Process for abs_ac_coeff minus1 42
7.2.4. Process for Variable-Length Codes 42

8. Metadata Information 43
8.1. Metadata Payload 43
8.2. List of Metadata Syntax and Semantics 44
8.2.1. Filler Metadata 44
8.2.2. Recommendation ITU-T T.35 Metadata 44
8.2.3. Mastering Display Color Volume Metadata 45
8.2.4. Content Light-Level Information Metadata 46
8.2.5. User-Defined Metadata 47
8.2.6. Undefined Metadata 47

9. Profiles, Levels, and Bands 48
9.1. Overview of Profiles, Levels, and Bands 48
9.2. Requirements on Video Decoder Capability 48
9.3. Profiles 49
9.3.1. General 49
9.3.2. 422-10 Profile 49
9.3.3. 422-12 Profile 49
9.3.4. 444-10 Profile 50
9.3.5. 444-12 Profile 50
9.3.6. 4444-10 Profile 51
9.3.7. 4444-12 Profile 51
9.3.8. 400-10 Profile 52

Lim, et al. Informational Page 4

RFC 9924 APV February 2026

9.4. Levels and Bands 52
9.4.1. General 52
9.4.2. Limits of Levels and Bands 53

10. Security Considerations 54
11. IANA Considerations 54
12. References 54

12.1. Normative References 54

12.2. Informative References 55
Appendix A. Raw Bitstream Format 56
Appendix B. APV Implementations 56

B.1. OpenAPV Open Source Project 56

B.2. Android Open Source Project 56

B.3. FFmpeg Open Source Project 56

Authors' Addresses 56

1. Introduction

This document defines the bitstream format and decoding process for the Advanced Professional
Video (APV) codec. The APV codec is a professional video codec that was developed in response
to the need for professional-level, high-quality video recording and post production. The
primary purpose of the APV codec is for use in professional video recording and editing
workflows for various types of content. This specification is neither the product of the IETF nor a
consensus view of the community.

The APV codec supports the following features:

* Perceptually lossless video quality that is close to the original, uncompressed quality;
* Low complexity and high throughput intra frame only coding without inter frame coding;

* Intra frame coding without prediction between pixel values but with prediction between
transformed values for low delay encoding;

* High bit rates of up to a few Gbps for 2K, 4K, and 8K resolution content, enabled by a
lightweight entropy coding scheme;

* Frame tiling for immersive content and for enabling parallel encoding and decoding;

* Various chroma sampling formats from 4:0:0 to 4:4:4:4, and bit depths from 10 to 16 (Note:
Only the profiles supporting 10 bits and 12 bits are currently defined);

Lim, et al. Informational Page 5

RFC 9924 APV February 2026

* The ability to decode and re-encode multiple times without severe visual quality
degradation; and

* Various metadata including HDR10/10+ and user-defined formats.

2. Terms

2.1. Terms and Definitions

access unit (AU): a collection of primitive bitstream units (PBU) including various types of
frames, metadata, filler, and access unit information, associated with a specific time

band: a defined set of constraints on the value of the maximum coded data rate of each level

block: MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients

byte-aligned: a position in a bitstream that is an integer multiple of 8 bits from the position of
the first bit in the bitstream

chroma: a sample array or single sample representing one of the two color difference signals
related to the primary colors, represented by the symbols Cb and Cr in 4:2:2 or 4:4:4 color
format

coded frame: a coded representation of a frame containing all macroblocks of the frame
coded representation: a data element as represented in its coded form

component: an array or a single sample from one of the three arrays (luma and two chroma)
that compose a frame in 4:2:2, or 4:4:4 color format, or an array or a single sample from an
array that compose a frame in 4:0:0 color format, or an array or a single sample from one of
the four arrays that compose a frame in 4:4:4:4 color format.

decoded frame: a frame derived by decoding a coded frame

decoder: an embodiment of a decoding process

decoding process: a process specified that reads a bitstream and derives decoded frames from it
encoder: an embodiment of an encoding process

encoding process: a process that produces a bitstream conforming to this document

flag: avariable or single-bit syntax element that can take one of the two possible values: 0 and 1

frame: an array of luma samples and two corresponding arrays of chroma samples in 4:2:2 and
4:4:4 color format, or an array of samples in 4:0:0 color format, or four arrays of samples in
4:4:4:4 color format

level: a defined set of constraints on the values that are taken by the syntax elements and
variables of this document, or the value of a transform coefficient prior to scaling

Lim, et al. Informational Page 6

RFC 9924 APV February 2026

luma: asample array or single sample representing the monochrome signal related to the
primary colors, represented by the symbol or subscript Y or L

macroblock (MB): a square block of luma samples and two corresponding blocks of chroma
samples of a frame in 4:2:2 or 4:4:4 color format, or a square block of samples of a frame in
4:0:0 color format, or four square blocks of samples of a frame in 4:4:4:4 color format

metadata: data describing various characteristics related to a bitstream without directly
affecting the decoding process of it.

partitioning: a division of a set into subsets such that each element of the set is in exactly one
of the subsets

prediction: an embodiment of the prediction process

prediction process: use of a predictor to provide an estimate of the data element currently
being decoded

predictor: a combination of specified values or previously decoded data elements used in the
decoding process of subsequent data elements

primitive bitstream unit (PBU): a data structure to construct an access unit with frame and
metadata

profile: a specified subset of the syntax of this document

quantization parameter (QP): a variable used by the decoding process for the scaling value of
transform coefficients

raster scan: a mapping of a rectangular two-dimensional pattern to a one-dimensional pattern
such that the first entries in the one-dimensional pattern are from the top row of the two-
dimensional pattern scanned from left to right, followed by the second, third, etc., rows of the
pattern each scanned from left to right

raw bitstream: an encapsulation of a sequence of access units where a field indicating the size
of an access unit precedes each access unit as defined in Appendix A

source: a term used to describe the video material or some of its attributes before the encoding
process

syntax element: an element of data represented in the bitstream

syntax structure: zero or more syntax elements present together in a bitstream in a specified
order

tile: arectangular region of MBs within a particular tile column and a particular tile row in a
frame

tile column: a rectangular region of MBs having a height equal to the height of the frame and
width specified by syntax elements in the frame header

Lim, et al. Informational Page 7

RFC 9924 APV February 2026

tile row: a rectangular region of MBs having a height specified by syntax elements in the frame
header and a width equal to the width of the frame

tile scan: a specific sequential ordering of MBs partitioning a frame in which the MBs are
ordered consecutively in MB raster scan in a tile and the tiles in a frame are ordered
consecutively in a raster scan of the tiles of the frame

transform coefficient: a scalar quantity, considered to be in a frequency domain, that is
associated with a particular one-dimensional or two-dimensional index

2.2. Abbreviated Terms

LSB: least significant bit
MSB: most significant bit

RGB: Red, Green and Blue

3. Conventions Used in This Document

3.1. General

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

3.2. Operators

The operators and the order of precedence are the same as used in the C programming language
[[SO9899]. However, there are some exceptions for the operators described in the Section 3.2.1
and Section 3.2.2, which follows widely used industry practices for video codecs.

3.2.1. Arithmetic Operators

Il
an integer division with rounding of the result toward zero. For example, 7//4 and -7//-4 are
rounded to 1 and -7//4 and 7//-4 are rounded to -1
[or div(x,y)
a division in mathematical equations where no truncation or rounding is intended
min(x,y)
the minimum value of the values x and y
max(x,y)

the maximum value of the values x and y

Lim, et al. Informational Page 8

RFC 9924 APV February 2026

ceil(x)
the smallest integer value that is larger than or equal to x

clip(x,y,z)
clip(x,y,z)=max(x,min(z,y))

sum (i=x, y, f(i))
a summation of f(i) with i taking all integer values from x up to and including y

log2(x)
the base-2 logarithm of x

3.2.2. Bitwise Operators

& (bit-wise "and")
When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on arguments with unequal bit depths, the bit depths are
equalized by adding zeros in significant positions to the argument with lower bit depth.

| (bit-wise "or")
When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on arguments with unequal bit depths, the bit depths are
equalized by adding zeros in significant positions to the argument with lower bit depth.

X>>y
arithmetic right shift of a two's complement integer representation of x by y binary digits.
This function is defined only for non-negative integer values of y. Bits shifted into the most
significant bits (MSBs) as a result of the right shift have a value equal to the MSB of x prior to
the shift operation.

X <<y
arithmetic left shift of a two's complement integer representation of x by y binary digits. This
function is defined only for non-negative integer values of y. Bits shifted into the least
significant bits (L.SBs) as a result of the left shift have a value equal to 0.

3.3. Range Notation

X=Y.Z
X takes on integer values starting from y to z, inclusive, with x, y, and z being integer
numbers and z being greater than y.

3.3.1. Order of Operations Precedence
When order of precedence is not indicated explicitly by use of parentheses, operations are
evaluated in the following order.

* Operations of a higher precedence are evaluated before any operation of a lower
precedence. Table 1 specifies the precedence of operations from highest to lowest;
operations closer to the top of the table indicate a higher precedence.

Lim, et al. Informational Page 9

RFC 9924 APV February 2026

» Operations of the same precedence are evaluated sequentially from left to right.

operations (with operands x, y, and z)

X++", llX__

"Ix", "-Xx" (as a unary prefix operator)

Xy (power)

non nwon non

"XFyL XYL XY, "X %y

non "on

"X +y", "X -y", "sum (i=x, y, f(i)"

"X<<y, X>>yu

nwon "o nwon

"X<y, X<:y, X>y, X>:yn

"X =y", "X I= y"
"X &y"

IIX | yll
"X && y"

x|y
"X?y:z"

X.y

won nwon

X=X A=Y K=y

Table 1: Operation precedence from highest
(top of the table) to lowest (bottom of the
table)

3.4. Variables, Syntax Elements, and Tables

Each syntax element is described by its name in all lowercase letters and its type is provided
next to the syntax code in each row. Each syntax element and multi-byte integers are written in
big endian format. The decoding process behaves according to the value of the syntax element
and to the values of previously decoded syntax elements.

In some cases, the syntax tables may use the values of other variables derived from syntax
elements values. Such variables appear in the syntax tables or text, named by a mixture of lower
case and uppercase letters and without any underscore characters. Variables with names
starting with an uppercase letter are derived for the decoding of the current syntax structure
and all dependent syntax structures. Variables with names starting with an uppercase letter may

Lim, et al. Informational Page 10

RFC 9924 APV February 2026

be used in the decoding process for later syntax structures without mentioning the originating
syntax structure of the variable. Variables with names starting with a lowercase letter are only
used within the section in which they are derived.

Functions that specify properties of the current position in the bitstream are referred to as
syntax functions. These functions are specified in Section 5.2 and assume the existence of a
bitstream pointer with an indication of the position of the next bit to be read by the decoding
process from the bitstream.

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a
matrix. Arrays can either be syntax elements or variables. Square brackets are used for the
indexing of arrays. In reference to a visual depiction of a matrix, the first square bracket is used
as a column (horizontal) index and the second square bracket is used as a row (vertical) index.

A specification of values of the entries in rows and columns of an array may be denoted by {{...}
{..}}, where each inner pair of brackets specifies the values of the elements within a row in
increasing column order and the rows are ordered in increasing row order. Thus, setting a
matrix s equal to {{1 6}{4 9}} specifies that s[0][0] is set equal to 1, s[1][0] is set equal to 6, s[0][1]
is set equal to 4, and s[1][1] is set equal to 9.

Binary notation is indicated by enclosing the string of bit values in single quote marks. For
example, '0b01000001' represents an eight-bit string having only its second and its last bits
(counted from the most to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used
instead of binary notation when the number of bits is an integer multiple of 4. For example,
0x41 represents an eight-bit string having only its second and its last bits (counted from the most
to the least significant bit) equal to 1.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is
represented by any value different from zero.

3.5. Processes

Processes are used to describe the decoding of syntax elements. A process has a separate
specification and invoking. When invoking a process, the assignment of variables is specified as
follows:

o If the variables at the invoking and the process specification do not have the same name, the
variables are explicitly assigned to lower case input or output variables of the process
specification.

» Otherwise (the variables at the invoking and the process specification have the same name),
the assignment is implied.

In the specification of a process, a specific coding block is referred to by the variable name
having a value equal to the address of the specific coding block.

Lim, et al. Informational Page 11

RFC 9924 APV February 2026

4. Formats and Processes Used in This Document

4.1. Bitstream Formats
This section specifies the bitstream format of the Advanced Professional Video (APV) codec.

A raw bitstream format consists of a sequence of AUs where the field indicating the size of
access units precedes each of them. The raw bitstream format is specified in Appendix A.

4.2. Source, Decoded, and Output Frame Formats

This section specifies the relationship between the source and decoded frames.
The video source that is represented by the bitstream is a sequence of frames.
Source and decoded frames are each comprised of one or more sample arrays:

* Monochrome (for example, Luma only)
* Luma and two chroma (for example, YCbCr or YCgCo as specified in [H273]).
* Green, blue, and red (GBR, also known as RGB).

* Arrays representing other unspecified tri-stimulus color samplings (for example, YZX, also
known as XYZ as specified in [CIE15]).

* Arrays representing other unspecified four color samplings

For the convenience of notation and terminology in this document, the variables and terms
associated with these arrays can be referred to as luma and chroma regardless of the actual
color representation method in use.

The values of the variables SubWidthC, SubHeightC, and NumComps depend on the chroma
format sampling structure as specified in Table 2. The chroma format sampling structure is
signaled through chroma_format_idc. Other values of chroma_format_idc, SubwidthC,
SubHeightC, and NumComps may be specified in future versions of this document.

chroma_format_ idc Chroma format SubWidthC SubHeightC NumComps

0 4:0:0 1 1 1
1 reserved reserved reserved reserved
2 4:2:2 2 1 3
3 4:4:4 1 1 3
4 4:4:4:4 1 1 4

Lim, et al. Informational Page 12

RFC 9924 APV February 2026

chroma_format idc Chroma format SubWidthC SubHeightC NumComps

5.7 reserved reserved reserved reserved

Table 2: SubWidthC, SubHeightC, and NumComps values derived from chroma_format_idc
In 4:0:0 sampling, there is only one sample array that can be considered as the luma array.

In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the
luma array.

In 4:4:4 sampling and 4:4:4:4 sampling, all the sample arrays have the same height and width as
the luma array.

The number of bits necessary for the representation of each of the samples in the luma and
chroma arrays in a video sequence is in the range of 10 to 16, inclusive.

When the value of chroma_format_idc is equal to 2, the chroma samples are co-sited with the
corresponding luma samples; the nominal locations in a frame are as shown in Figure 1.

2@ @ g @
2@ @ g @
2@ @ g @
2@ @ g @
@ @ g @

& - location where both luma and chroma sample exist
* - location where only luma sample exist

Figure 1: Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame

For each frame, when the value of chroma_format_idc is equal to 3 or 4, all of the array samples
are co-sited; the nominal locations in a frame are as shown in Figure 2.

Lim, et al. Informational Page 13

RFC 9924 APV February 2026

& & & & & & & & & & ...
& & & & & & & & & & ...
& & & & & & & & & & ...

& & & & & & & & & & ...

& - location where both luma and chroma sample exist

Figure 2: Nominal vertical and horizontal locations of 4:4:4 and 4:4:4:4 luma and chroma samples
in a frame

Samples are processed in units of MBs. The variables MbWidth and MbHeight, which specify the
width and height of the luma arrays for each MB, are defined as follows:

« MbWidth = 16
« MbHeight = 16

The variables MbWidthC and MbHeightC, which specify the width and height of the chroma
arrays for each MB, are derived as follows:

« MbWidthC = MbWidth // SubWidthC
« MbHeightC = MbHeight // SubHeightC

4.3. Partitioning of a Frame

4.3.1. Partitioning of a Frame into Tiles

This section specifies how a frame is partitioned into tiles.

A frame is divided into tiles. A tile is a group of MBs that cover a rectangular region of a frame
and is processed independently of other tiles. Every tile has the same width and height, except
possibly tiles at the right or bottom frame boundary when the frame width or height is not a
multiple of the tile width or height, respectively. The tiles in a frame are scanned in raster order.
Within a tile, the MBs are scanned in raster order. Each MB is comprised of one (MbWidth) x
(MbHeight) luma array and zero, two, or three corresponding chroma sample arrays.

For example, a frame is divided into 6 tiles (3 tile columns and 2 tile rows) as shown in Figure 3.
In this example, the tile size is defined as 4 column MBs and 4 row MBs. In case of the third and
sixth tiles (in raster order), the tile size is 2 column MBs and 4 row MBs since the frame width is
not a multiple of the tile width.

Lim, et al. Informational Page 14

RFC 9924 APV February 2026

S e e e N e P e e e el e e e e e e e e
| | | #MB | MB | MB | MB # MB | MB
Fom e Fom - dommm - +
| | | #MB | MB | MB | MB # MB | MB
+-———- tile ----—- e - —————— +
| | | #MB | MB | MB | MB # MB | MB
o Fom domm - +
| | | # MB | MB | MB | MB # MB | MB
4===================f4===================4=========+
MB | MB | MB | MB # MB | MB | MB | MB # MB | MB
Fomm - Fom - ettt +
MB | MB | MB | MB # MB | MB | MB | MB # MB | MB
o Fom domm - +
MB | MB | MB | MB # MB | MB | MB | MB # MB | MB
Fom e Fom - dommm - +
MB | MB | MB | MB # MB | MB | MB | MB # MB | MB
t=======-=-=SsSS=SSos-sSSSo+4 =SS =S=S==-=SsSS=S=======+=========+

#,= tile boundary
|,- MB boundary

Figure 3: Frame with 10 by 8 MBs that is partitioned into 6 tiles

4.3.2. Spatial or Component-Wise Partitioning

The following divisions of processing elements form spatial or component-wise partitioning:

* the division of each frame into components;

* the division of each frame into tile columns;

« the division of each frame into tile rows;

« the division of each tile column into tiles;

« the division of each tile row into tiles;

* the division of each tile into color components;
« the division of each tile into MBs;

* the division of each MB into blocks.

4.4. Scanning Processes

4.4.1. Zig-Zag Scan

This process converts a two dimensional array into an one-dimensional array. The process starts
at the top-left position in the block and then moves diagonally, changing direction at the edges of
the block until it reaches the bottom-right position. Figure 4 shows an example of scanning
order for 4x4 size block.

Lim, et al. Informational Page 15

RFC 9924 APV February 2026

S e e e e S S S I e e e e
#00 | 81 | 05 | 06 #
Fom e +
#02 | 04 | 07 | 12 #
Fomm - +
#03 | 08 | 11 | 13 #
o +
#09 | 18 | 14 | 15 #
t===================+

Figure 4: Example of zig-zag scanning order for 4x4 block
Inputs to this process are:

* a variable blkWidth specifying the width of a block, and
* a variable blkHeight specifying the height of a block.

Output of this process is the array zigZagScan[sPos].

The array index sPos specifies the scan position ranging from 0 to (blkWidth * blkHeight)-1.
Depending on the value of blkWidth and blkHeight, the array zigZagScan is derived as follows:

pos = 0
zigZagScan[pos] = ©
pos++
for(line = 1; line < (blkWidth + blkHeight - 1); line++){
if(line % 2){
x = min(line, blkWidth - 1)
y = max(0, line - (blkWidth - 1))
while(x >=0 && y < blkHeight){
zigZagScan[pos] = y * blkWidth + x
pos++
X=—
y++
}
}
elseq
y = min(line, blkHeight - 1)
x = max(®, line - (blkHeight - 1))
while(y >= 0 && x < blkWidth){
zigZagScan[pos] = y * blkWidth + x
pos++
X++
y--
}
}
}

Figure 5: Pseudo-code for zig-zag scan

Lim, et al. Informational Page 16

RFC 9924 APV February 2026

4.4.2. Inverse Scan

Inputs to this process are:

* a variable blkWidth specifying the width of a block, and
* a variable blkHeight specifying the height of a block.

Output of this process is the array inverseScan[rPos].

The array index rPos specifies the raster scan position ranging from 0 to (blkWidth *
blkHeight)-1. Depending on the value of blkWidth and blkHeight, the array inverseScan is
derived as follows:

* The variable forwardScan is derived by invoking the zig-zag scan order initialization
process as specified in Section 4.4.1 with input parameters blkWidth and blkHeight.

* The output variable inverseScan is derived as follows:

for(pos = 0; pos < blkWidth * blkHeight; pos++){
inverseScan[forwardScan[pos]] = pos

}

Figure 6: Pseudo-code for inverse zig-zag scan

5. Syntax and Semantics

5.1. Method of Specifying Syntax

The syntax tables specify a superset of the syntax of all allowed bitstreams. Note that a decoder
MUST implement some means for identifying entry points into the bitstream and some means to
identify and handle non-conforming bitstreams. The methods for identifying and handling
errors and other such situations are not specified in this document.

The APV bitstream is described using syntax code based on the C programming language
[[SO9899] -- including use of if/else, while, and for -- as well as functions defined within this
document.

The syntax table in syntax code is presented in a two-column format such as shown in Figure 7.
In this form, the type column provides a type referenced in that same line of syntax code by
using the syntax elements processing functions defined in Section 5.2.5.

Lim, et al. Informational Page 17

RFC 9924 APV February 2026

syntax code | type
—— |=====
ExampleSyntaxCode() { |
operations |
syntax_element | u(n)
|

Figure 7: A depiction of type-labeled syntax code for syntax description in this document

5.2. Syntax Functions and Descriptors

The functions presented in this document are used in the syntactical description. These
functions are expressed in terms of the value of a bitstream pointer that indicates the position of
the next bit to be read by the decoding process from the bitstream.

5.2.1. byte_aligned()

o If the current position in the bitstream is on the last bit of a byte, i.e., the next bit in the
bitstream is the first bit in a byte, the return value of byte_aligned() is equal to TRUE.

* Otherwise, the return value of byte_aligned() is equal to FALSE.

5.2.2. more_data_in_tile()

o If the current position in the i-th tile() syntax structure is less than TileSize[i] in bytes from
the beginning of the tile_header() syntax structure of the i-th tile, the return value of
more_data_in_tile() is equal to TRUE.

* Otherwise, the return value of more_data_in_tile() is equal to FALSE.

5.2.3. next_bits(n)

This function provides the next n bits in the bitstream for comparison purposes, without
advancing the bitstream pointer.

5.2.4. read_bits(n)

This function indicates that the next n bits from the bitstream are to be read and it advances the
bitstream pointer by n bit positions. When n is equal to 0, read_bits(n) is specified to return a
value equal to 0 and to not advance the bitstream pointer.

5.2.5. Syntax Element Processing Functions
b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is
specified by the return value of the function read_bits(8).

f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first, i.e., big
endian format. The parsing process for this descriptor is specified by the return value of the
function read_bits(n).

Lim, et al. Informational Page 18

RFC 9924 APV February 2026

u(n): unsigned integer using n bits. The parsing process for this descriptor is specified by the
return value of the function read_bits(n) interpreted as a binary representation of an
unsigned integer with the most significant bit written first.

h(v): variable-length entropy coded syntax element with the left bit first, i.e., big endian format.
The parsing process for this descriptor is specified in Section 7.1.

5.3. List of Syntax and Semantics

5.3.1. Access Unit

syntax code

access_unit(au_size){
signature
currReadSize = 4

|

I

I
do(){ |
pbu_size | u(32)

I

I

I

I

I

currReadSize += 4

pbu()
currReadSize += pbu_size
} while (au_size > currReadSize)

Figure 8: access unit syntax code

signature
A four-character code that identifies the bitstream as an APV AU. The value MUST be
'aPv1' (0x61507631).

pbu_size
the size of a primitive bitstream unit in bytes. A value of 0 is prohibited and the value of
OXFFFFFFFF for pbu_size is reserved for future use.

Note: An AU consists of one primary frame, zero or more non-primary frames such as a frame
for additional view, zero or more alpha frames, zero or more depth frames, zero or more
preview frames such as a frame with smaller resolution, zero or more metadata, and zero or
more fillers.

5.3.2. Primitive Bitstream Unit

Lim, et al. Informational Page 19

RFC 9924 APV

syntax code

pbu() {
pbu_header()
if((1 <= pbu_type && pbu_type <=2)

~——
~——

(25 <= pbu_type && pbu_type <= 27
frame()

else if(pbu_type == 65)
au_info()

else if(pbu_type == 66)
metadata()

else if (pbu_type == 67)
filler()

Figure 9: primitive bitstream unit syntax code

5.3.3. Primitive Bitstream Unit Header

syntax code

pbu_header(){
pbu_type
group_id
reserved_zero_8bits

Figure 10: primitive bitstream unit header syntax code

February 2026

indicates the type of data in a PBU listed in Table 3. Other values of pbu_type are reserved for

pbu_type
future use.

pbu_type meaning
0 reserved
1 primary frame
2 non-primary frame

3..24 reserved
25 preview frame
26 depth frame
Lim, et al. Informational

Page 20

RFC 9924 APV February 2026

pbu_type meaning notes
27 alpha frame
28...64 reserved
65 access unit information
66 metadata
67 filler
68...255 reserved

Table 3: List of PBU types

Note: A PBU with pbu_type equal to 65 (access unit information) may happen in an AU. If it
exists, it MUST be the first PBU in an AU, and it can be ignored by a decoder.

group_id
indicates the identifier to associate a coded frame with metadata. More than two frames can
have the same group_id in a single AU. A primary frame and a non-primary frame MUST have
different group_id values, and two non-primary frames MUST have different group_id values.
When the value of group_id is equal to 0, the value of pbu_type MUST be greater than 64. The
value of OXFFFF for group_id is reserved for future use.

reserved_zero_8bits
MUST be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of
reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 MUST ignore PBU with values of reserved_zero_8bits greater
than 0.

5.3.4. Frame

syntax code

|
frame(){ |
frame_header() |
for(i = 0; i < NumTiles; i++){ |
I

I

|

I

tile_size[i]
tile(1)

filler()

Figure 11: frame() syntax code

Lim, et al. Informational Page 21

RFC 9924 APV February 2026

tile_sizeli]
indicates the size in bytes of i-th tile data (i.e., tile(i)) in raster order in a frame. The value of 0
for tile_size[i] is reserved for future use.

The variable TileSize[i] is set equal to tile_size[i].

5.3.5. Frame Header

byte_alignment()

syntax code | type
__ |_____

frame_header () |

frame_info() |
reserved_zero_8bits | u(8)
color_description_present_flag | u(1)

if(color_description_present_flag){ |
color_primaries | u(8)
transfer_characteristics | u(8)
matrix_coefficients | u(8)
full_range_flag | u(1)

} I
use_g_matrix | u(1)

if(use_qg_matrix){ |

quantization_matrix() |

} I

tile_info() |
reserved_zero_8bits | u(8)

|

|

Figure 12: frame_header() syntax code

reserved_zero_8bits
MUST be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of
reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 MUST ignore PBU with values of reserved_zero_8bits greater
than 0.

color_description_present_flag equal to 1
specifies that color_primaries, transfer_characteristics, and matrix_coefficients are present.
color_description_present_flag equal to 0 specifies that color_primaries,
transfer_characteristics, and matrix_coefficients are not present.

color_primaries
MUST have the semantics of ColourPrimaries as specified in [H273]. When the
color_primaries syntax element is not present, the value of color_primaries is inferred to be
equal to 2.

Lim, et al. Informational Page 22

RFC 9924 APV February 2026

transfer_characteristics
MUST have the semantics of TransferCharacteristics as specified in [H273]. When the
transfer_characteristics syntax element is not present, the value of transfer_characteristics is
inferred to be equal to 2.

matrix_coefficients
MUST have the semantics of MatrixCoefficients as specified in [H273]. When the
matrix_coefficients syntax element is not present, the value of matrix_coefficients is inferred
to be equal to 2.

full_range_flag
MUST have the semantics of VideoFullRangeFlag as specified in [H273]. When the
full range_flag syntax element is not present, the value of full_range_flag is inferred to be
equal to 0.

use_q_matrix
with a value of 1 specifies that the quantization matrices are present. A value of 0 specifies
that the quantization matrices are not present.

reserved_zero_8bits
MUST be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of
reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 MUST ignore PBU with values of reserved_zero_8bits greater
than 0.

5.3.6. Frame Information

syntax code | type
__ |_____

frame_info(){ |
profile_idc | u(8)
level_idc | u(8)
band_idc | u(3)
reserved_zero_b5bits | u(5)
frame_width | u(24)
frame_height | u(24)
chroma_format_idc | u(4)
bit_depth_minus8 | u(4)
capture_time_distance | u(8)
reserved_zero_8bits | u(8)

I

Figure 13: frame_info() syntax code

profile_idc
indicates a profile to which the coded frame conforms as specified in Section 9. Bitstreams
SHALL NOT contain values of profiles_idc other than those specified in Section 9. Other values
of profile_idc are reserved for future use.

Lim, et al. Informational Page 23

RFC 9924 APV February 2026

level_idc
indicates a level to which the coded frame conforms as specified in Section 9. Bitstreams
SHALL NOT contain values of level_idc other than those specified in Section 9. Other values of
level_idc are reserved for future use.

band_idc
specifies a maximum coded data rate of level_idc as specified in Section 9. Bitstreams SHALL
NOT contain values of band_idc other than those specified in Section 9. The value of band_idc
MUST be in the range of 0 to 3. Other values of band_idc are reserved for future use.

reserved_zero_5hits
MUST be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of
reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 MUST ignore PBU with values of reserved_zero_8bits greater
than 0.

frame width
specifies the width of the frame in units of luma samples. frame_width MUST be a multiple of
2 when chroma_format_idc has a value of 2. The value 0 is reserved for future use.

frame_height
specifies the height of the frame in units of luma samples. The value 0 is reserved for future
use.

The variables FrameWidthInMbsY, FrameHeightInMbsY, FrameWidthInSamplesY,
FrameHeightInSamplesY, FrameWidthInSamplesC, FrameHeightInSamplesC,
FrameSizeInMbsY, and FrameSizeInSamplesY are derived as follows:

* FrameWidthInSamplesY = frame_width

* FrameHeightInSamplesY = frame_height

* FrameWidthInMbsY = ceil(FrameWidthInSamplesY / MbWidth)

* FrameHeightInMbsY = ceil(FrameHeightInSamplesY / MbHeight)

* FrameWidthInSamplesC = FrameWidthInSamplesY // SubWidthC

* FrameHeightInSamplesC = FrameHeightInSamplesY // SubHeightC

» FrameSizeInMbsY = FrameWidthInMbsY * FrameHeightInMbsY

» FrameSizeInSamplesY = FrameWidthInSamplesY * FrameHeightInSamplesY

chroma_format_idc
specifies the chroma sampling relative to the luma sampling as specified in Table 2. The value
of chroma_format_idc MUST be 0, 2, 3, or 4. Other values are reserved for future use.

bit_depth_minus8
specifies the bit depth of the samples. The variables BitDepth and QpBdOf{fset are derived as
follows:

* BitDepth = bit_depth_minus8 + 8
» QpBdOffset = bit_depth_minus8 * 6

Lim, et al. Informational Page 24

RFC 9924 APV February 2026

bit_depth_minus8 MUST be in the range of 2 to 8, inclusive. Other values are reserved for
future use.

capture_time_distance
indicates the time difference between the capture time of the frames in the previous access
unit and frames in the current access unit in milliseconds if there has been any access unit
preceding the access unit this frame belongs to.

reserved_zero_8bits
MUST be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of
reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 MUST ignore PBU with values of reserved_zero_8bits greater
than 0.

5.3.7. Quantization Matrix

syntax code | type
__ |_____
quantization_matrix(){ |
for(i = 0; i < NumComps; i++){
for(y = 0; y < 8; y++){ |
for(x = 0; x < 8; x++){
g_matrix[i][x][y] I u(8)
I
I
I

Figure 14: quantization_matrix() syntax code

g_matrix[i][x][y]
specifies a scaling value in the quantization matrices. When q_matrix[i][x][y] is not present, it
is inferred to be equal to 16. The array index i specifies an indicator for the color component;
when chroma_format_idc is equal to 2 or 3, the value of the index iis equal to 0 for Y
component, 1 for Cb, and 2 for Cr. The value of 0 for q_matrix[i][x][y] is reserved for future
use.

The quantization matrix, QMatrix[i][x][y], is derived as follows:
» QMatrix[i][x][y] = q_matrix[i][x][y]

5.3.8. Tile Info

Lim, et al. Informational Page 25

RFC 9924 APV February 2026

syntax code
tile_info(){
tile_width_in_mbs
tile_height_in_mbs
startMb = @
for(i = 0; startMb < FrameWidthInMbsY; i++){
ColStarts[i] = startMb * MbWidth
startMb += tile_width_in_mbs

I

I

I

I

I

I

I

I

I

} I

ColStarts[i] = FrameWidthInMbsY*MbWidth |

TileCols = 1 |

startMb = 0 |
for(i = 0; startMb < FrameHeightInMbsY; i++){

RowStarts[i] = startMb * MbHeight |

startMb += tile_height_in_mbs |

I

I

I

I

I

I

I

I

I

I

I

}
RowStarts[i] = FrameHeightInMbsY*MbHeight
TileRows = i
NumTiles = TileCols * TileRows
tile_size_present_in_fh_flag
if(tile_size_present_in_fh_flag){

for(i = 0; i < NumTiles; i++){

tile_size_in_fh[i]

u(1)

u(32)
}

}

}

Figure 15: tile_info() syntax code

tile_ width_in_mbs
specifies the width of a tile in units of MBs.

tile_height_in_mbs
specifies the height of a tile in units of MBs.

tile_size_present_in_fh_flag
equal to 1 specifies that tile_size_in_fh[i] is present in the frame header.
tile_size_present_in_fh_flag equal to 0 specifies that tile_size_in_fh[i] is not present in the
frame header.

tile_size_in_fh[i]
indicates the size in bytes of i-th tile data in raster order in a frame. The value of
tile_size_in_fh[i] MUST have the same value with tile_size[i]. When it is not present, the value
of tile_size_in_fh[i] is inferred to be equal to tile_size[i]. The value of 0 for tile_size_in_fhl[i] is
reserved for future use.

5.3.9. Access Unit Information

Lim, et al. Informational Page 26

RFC 9924 APV

syntax code

au_info(){
num_frames
for(i = 0; i < num_frames; i++){
pbu_type
group_id
reserved_zero_8bits
frame_info()

reserved_zero_8bits
byte_alignment()
filler()

Figure 16: au_info() syntax code

num_frames

indicates the number of frames contained in the current AU.

pbu_type

has the same semantics as pbu_type in the pbu_header() syntax.

February 2026

Note: The value of pbu_type MUST be 1, 2, 25, 26, or 27 in bitstreams conforming to this

document.

group_id

has the same semantics as group_id in the pbu_header() syntax.

reserved_zero_8bits

MUST be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of
reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 MUST ignore PBU with values of reserved_zero_8bits greater

than 0.

5.3.10. Metadata

Lim, et al. Informational

Page 27

RFC 9924 APV

syntax code

metadata(){
metadata_size
currReadSize = 0
do{
payloadType = ©
while(next_bits(8) == OxFF){
ff_byte
payloadType += ff_byte
currReadSize++
}
metadata_payload_type
payloadType += metadata_payload_type
currReadSize++

payloadSize = ©
while(next_bits(8) == OxFF){
ff_byte
payloadSize += ff_byte
currReadSize++
}
metadata_payload_size
payloadSize += metadata_payload_size
currReadSize++

metadata_payload(payloadType, payloadSize)

currReadSize += payloadSize
} while(metadata_size > currReadSize)
filler()

Figure 17: metadata() syntax code

metadata_size

specifies the size of metadata before filler() in the current PBU.

ff byte
is a byte equal to OXFF.

metadata_payload_type

specifies the last byte of the payload type of a metadata.

metadata_payload_size

specifies the last byte of the payload size of a metadata.

Syntax and semantics of metadata_payload() are specified in Section 8.

5.3.11. Filler

Lim, et al. Informational

f(8)

u(8)

f(8)

u(8)

February 2026

Page 28

RFC 9924 APV

syntax code

filler(){
while(next_bits(8) == OxFF)
ff_byte

Figure 18: filler() syntax code

ff byte
is a byte equal to OXFF.

5.3.12. Tile

syntax code

tile(tileIdx){
tile_header(tileIdx)
for(i = 0; i < NumComps; i++){
tile_data(tileIdx, i)

while(more_data_in_tile()){
tile_dummy_byte

}
}

Figure 19: tile() syntax code

tile_dummy_byte
has any pattern of 8-bit string.

5.3.13. Tile header

Lim, et al. Informational

b(8)

February 2026

Page 29

RFC 9924 APV February 2026

syntax code
tile_header(tileIdx){
tile_header_size
tile_index
for(i = @; i < NumComps; i++){
tile_data_size[1i]

for(i = @; i < NumComps; i++){
tile_gp[i]

reserved_zero_8bits
byte_alignment()

c
—

w

N
~

Figure 20: tile_header() syntax code

tile_header_size
indicates the size of the tile header in bytes.

tile_index
specifies the tile index in raster order in a frame. tile_index MUST have the same value as
tileIdx.

tile_data_size[i]

indicates the size of the i-th color component data in a tile in bytes. The array index i specifies

an indicator for the color component; when chroma_format_idc is equal to 2 or 3, the value
of the index i is equal to 0 for Y component, 1 for Ch, and 2 for Cr. The value of 0 for
tile_data_size[i] is reserved for future use.

tile_qplil
specifies the quantization parameter value for i-th color component. The array index i
specifies an indicator for the color component; when chroma_format_idc is equal to 2 or 3,
the value of the index i is equal to 0 for Y component, 1 for Cb, and 2 for Cr. The Qpli] to be
used for the MBs in the tile are derived as follows:

* Qpli] = tile_qgpli] - QpBdOffset
* Qp[i] MUST be in the range of -QpBdOffset to 51, inclusive.

reserved_zero_8bits
MUST be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of
reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 MUST ignore PBU with values of reserved_zero_8bits greater
than 0.

5.3.14. Tile Data

Lim, et al. Informational Page 30

RFC 9924 APV February 2026

syntax code |
__ |_____
tile_data(tileIdx, cIdx){
x0 = ColStarts[tileIdx % TileCols]
y@ = RowStarts[tileIdx // TileCols] |
numMbColsInTile = (ColStarts[tileIdx % TileCols + 1] - |
ColStarts[tileIdx % TileCols]) // MbWidth |
numMbRowsInTile = (RowStarts[tileIdx // TileCols + 1] - |
RowStarts[tileIdx // TileCols]) // MbHeight |
numMbsInTile = numMbColsInTile * numMbRowsInTile
PrevDC = @ |
PrevDcDiff = 20 |
PrevistAclLevel = © |
|
|
|
|
|
|
|

for(i = 0; 1 < numMbsInTile; i++){
xMb = x0 + ((i % numMbColsInTile) * MbWidth)
yMb = y@ + ((i // numMbColsInTile) * MbHeight)

macroblock_layer(xMb, yMb, cIdx)

}
byte_alignment()

Figure 21: tile_data() syntax code

The tile_data() syntax calculates the location of the macroblocks belonging to each tile and
collects them.

5.3.15. Macroblock Layer

Lim, et al. Informational Page 31

RFC 9924 APV

syntax code

macroblock_layer(xMb, yMb, cIdx){
subW = (cIdx == 8)? 1 : SubWidthC
subH = (cIdx == 0)? 1 : SubHeightC
blkWidth = (cIdx == ©0)? MbWidth : MbWidthC
blkHeight = (cIdx == 0)? MbHeight : MbHeightC
TrSize = 8
for(y = 0; y < blkHeight; y += TrSize){
for(x = 0; x < blkWidth; x += TrSize){
abs_dc_coeff_diff
if(abs_dc_coeff_diff)
sign_dc_coeff_diff
TransCoeff[cIdx][xMb // subW + x][yMb // subH + y] =
PrevDC + abs_dc_coeff_diff *
(1 - 2*sign_dc_coeff_diff)
PrevDC =
TransCoeff[cIdx][xMb // subW + x][yMb // subH + y]
PrevDcDiff = abs_dc_coeff_diff
ac_coeff_coding(xMb // subW + x, yMb // subH + vy,
log2(TrSize), log2(TrSize), cIdx)

Figure 22: macroblock_layer() syntax code

abs_dc_coeff diff

February 2026

specifies the absolute value of the difference between the current DC transform coefficient

level and PrevDC.

sign_dc_coeff diff

specifies the sign of the difference between the current DC transform coefficient level and
PrevDC. sign_dc_coeff_diff equal to 0 specifies that the difference has a positive value.
sign_dc_coeff diff equal to 1 specifies that the difference has a negative value.

The transform coefficients are represented by the arrays TransCoeff[cIdx][x0][y0]. The array
indices x0, y0 specify the location (x0, y0) relative to the top-left sample for each component of

the frame. The array index cldx specifies an indicator for the color component; when

chroma_format_idc is equal to 2 or 3, the value of the index i is equal to 0 for Y component, 1 for
Ch, and 2 for Cr. The value of TransCoeff[cIdx][x0][y0] MUST be in the range of -32768 to 32767,

inclusive.

5.3.16. AC Coefficient Coding

Lim, et al. Informational

Page 32

RFC 9924 APV

syntax code

ac_coeff_coding(x0, y0, log2BlkWidth, log2BlkHeight, cIdx){

scanPos =
firstAC =
PrevLevel
PrevRun =
do{
coeff_zero_run
for(i = @8; i < coeff_zero_run; i++){
blkPos = ScanOrder[scanPos]
XxC = blkPos & ((1 << log2BlkWidth) - 1)
yC = blkPos >> log2BlkWidth
TransCoeff[cIdx][x0+xC][y® + yC] = @
scanPos++
}
PrevRun = coeff_zero_run
if(scanPos < (1 << (log2BlkWidth + log2BlkHeight)))({
abs_ac_coeff_minus1
sign_ac_coeff
level = (abs_ac_coeff_minus1 + 1) *
(1 - 2 * sign_ac_coeff)
blkPos = ScanOrder[scanPos]
XxC = blkPos & ((1 << log2BlkWidth) - 1)
yC = blkPos >> log2BlkWidth
TransCoeff[cIdx][x0 + xC][y® + yC] = level
scanPos++
PrevLevel = abs_ac_coeff_minus1 + 1
if(firstAC == 1){
firstAC = 0
PrevistAclLevel = PrevlLevel

}

PrevistAcLevel

QI ==

}
} while(scanPos < (1 << (log2BlkWidth + log2BlkHeight)))

Figure 23: ac_coeff_coding() syntax code

coeff zero_run

h(v)

February 2026

specifies the number of zero-valued transform coefficient levels that are located before the
position of the next non-zero transform coefficient level in a scan of transform coefficient

levels.

abs_ac_coeff minus1

plus 1 specifies the absolute value of an AC transform coefficient level at the given scanning

position.

Lim, et al. Informational

Page 33

RFC 9924 APV February 2026

sign_ac_coeff
specifies the sign of an AC transform coefficient level for the given scanning position.
sign_ac_coeff equal to 0 specifies that the corresponding AC transform coefficient level has a
positive value. sign_ac_coeff equal to 1 specifies that the corresponding AC transform
coefficient level has a negative value.

The array ScanOrder[sPos] specifies the mapping of the zig-zag scan position sPos, ranging from
0 to (1 << log2BlkWidth) * (1 << log2BlkHeight) - 1, inclusive, to a raster scan position rPos.
ScanOrder is derived by invoking Section 4.4.1 with input parameters blkWidth equal to (1 <<
log2BlkWidth) and blkHeight equal to (1 <<log2BlkHeight).

5.3.17. Byte Alignment

syntax code | type
__ |_____
byte_alignment(){ |
while(!byte_aligned())
alignment_bit_equal_to_zero | (1)
|

Figure 24: byte_alignment() syntax code

alignment_bit_equal_to_zero
MUST be equal to 0.

6. Decoding Process

This process is invoked to obtain a decoded frame from a bitstream. Input to this process is a
bitstream of a coded frame. Output of this process is a decoded frame.

The decoding process operates as follows for the current frame:

* The syntax structure for a coded frame is parsed to obtain the parsed syntax structures.

* The processes in Sections 6.1, 6.2, and 6.3 specify the decoding processes using syntax
elements in all syntax structures. For bitstreams conforming to this document, the coded
tiles of the frame MUST contain tile data for every MB of the frame, such that the division of
the frame into tiles and the division of the tiles into MBs form a partitioning of the frame.

o After all the tiles in the current frame have been decoded, the decoded frame is cropped
using the cropping rectangle if FrameWidthInSamplesY is not equal to FrameWidthInMbY *
MbWwidth or FrameHeightInSamplesY is not equal to FrameHeightInMbsY * MbHeight.

 The cropping rectangle, which specifies the samples of a frame that are output, is derived as
follows:

> The cropping rectangle contains the luma samples with horizontal frame coordinates
from 0 to FrameWidthInSampleY - 1 and vertical frame coordinates from 0 to
FrameHeightInSamplesY - 1, inclusive.

Lim, et al. Informational Page 34

RFC 9924 APV February 2026

o The cropping rectangle contains the two chroma arrays having frame coordinates (x//
SubWidth(, y//SubHeightC), where (x,y) are the frame coordinates of the specified luma
samples.

6.1. MB Decoding Process

This process is invoked for each MB.

Input to this process is a luma location (xMb, yMb) specifying the top-left sample of the current
luma MB relative to the top-left luma sample of the current frame. Outputs of this process are
the reconstructed samples of all color components. The total number of color components is
indicated by the value of NumComps for the current MB. For example, when chroma_format_idc
is equal to 2 or 3, the value of NumComps is equal to 3 and three components, Y component, Ch
component, and Cr component, are reconstructed

The following steps apply:

* Let recSamples[0] be a (MbWidth)x(MbHeight) array of the reconstructed samples of the
first color component (wWhen chroma_format_idc is equal to 2 or 3, Y).

* The block reconstruction process as specified in Section 6.2 is invoked with the luma
location (xMb, yMb), the variable nBIkW set equal to MbWidth, the variable nBIkH set equal
to MbHeight, the variable cldx set equal to 0, and the (MbWidth)x(MbHeight) array
recSamples[0] as inputs. The output is a modified version of the (MbWidth)x(MbHeight)
array recSamples[0], which is the reconstructed samples of the first color component for the
current MB.

When chroma_format_idc is not equal to 0, let recSamples[1] be a (MbWidthC)x(MbHeightC)
array of the reconstructed samples of the second color component. For example, when
chroma_format_idc is equal to 2 or 3, recSamples[1] is the Cb color component.

When chroma_format_idc is not equal to 0, the block reconstruction process as specified in
Section 6.2 is invoked with the luma location (xMb, yMb), the variable nBIkW set equal to
MbWidthC, the variable nBIkH set equal to MbHeightC, the variable cIdx set equal to 1, and
the (MbWidthC)x(MbHeightC) array recSamples[1] as inputs. The output is a modified
version of the (MbWidthC)x(MbHeightC) array recSamples[1], which is the reconstructed
samples of the second color component for the current MB.

When chroma_format_idc is not equal to 0, let recSamples[2] be a (MbWidthC)x(MbHeightC)
array of the reconstructed samples of the third color component. For example, when
chroma_format_idc is equal to 2 or 3, recSamples[2] is the Cr color component.

When chroma_format_idc is not equal to 0, the block reconstruction process as specified in
Section 6.2 is invoked with the luma location (xMb, yMb), the variable nBIkW set equal to
MbWidth(, the variable nBIkH set equal to MbHeightC, the variable cIdx set equal to 2, and
the (MbWidthC)x(MbHeightC) array recSamples[2] as inputs. The output is a modified
version of the (MbWidthC)x(MbHeightC) array recSamples[2], which is the reconstructed
samples of the third color component for the current MB.

* When chroma_format_idc is equal to 4, let recSamples[3] be a (MbWidthC)x(MbHeightC)
array of the reconstructed samples of the fourth color component.

Lim, et al. Informational Page 35

RFC 9924 APV February 2026

* When chroma_format_idc is equal to 4, the block reconstruction process as specified in
Section 6.2 is invoked with the luma location (xMb, yMb), the variable nBIkW set equal to
MbWidth(, the variable nBIKkH set equal to MbHeightC, the variable cIdx set equal to 3, and
the (MbWidthC)x(MbHeightC) array recSamples[3] as inputs. The output is a modified
version of the (MbWidthC)x(MbHeightC) array recSamples[3], which is the reconstructed
samples of the fourth color component for the current MB.

6.2. Block Reconstruction Process

Inputs to this process are:

* a luma location (xMb, yMb) specifying the top-left sample of the current MB relative to the
top-left luma sample of the current frame,

* two variables nBIkW and nBIkH specifying the width and the height of the current block,

* a variable cldx specifying the color component of the current block, and

* an (nBlkW)x(nBlkH) array of recSamples of a reconstructed block.

Output of this process is a modified version of the (nBIkW)x(nBIkH) array recSamples of
reconstructed samples.

The following applies:

» The variables numBIkX and numBIKkY are derived as follows:

o numBIkX = nBIKW // TrSize
o numBIKkY = nBIkH // TrSize

e For yIdx = 0..numBIKkY - 1, the following applies:
° For xIdx = 0..numBIkX - 1, the following applies:
= The variables xBlk and yBlk are derived as follows:

» xBlk = xMb // (cIdx==0? 1: SubWidthC) + xIdx*TrSize
= yBlk = yMb // (cIdx==0? 1: SubHeightC) + yIdx*TrSize

= The scaling and transformation process as specified in Section 6.3 is invoked with the
location (xBIK, yBIk), the variable cldx set equal to cIdx, the transform width nBIkW set
equal to TrSize, and the transform height nBIkH set equal to TrSize as inputs. The output
is a (TrSize)x(TrSize) array r of a reconstructed block.

= The (TrSize)x(TrSize) array recSamples is modified as follows:

= recSamples[(xIdx * TrSize) + i, (yIdx * TrSize) + j] = r[i,j], with i=0.TrSize-1, j=0.TrSize-1

6.3. Scaling and Transformation Process

Inputs to this process are:

* a location (xBIKY, yBIKkY) of the current color component specifying the top-left sample of the
current block relative to the top-left sample of the current frame,

Lim, et al. Informational Page 36

RFC 9924 APV February 2026

* a variable cldx specifying the color component of the current block,
* a variable nBIkW specifying the width of the current block, and
» a variable nBIkH specifying the height of the current block.

Output of this process is the (nBlIkW)x(nBlkH) array of reconstructed samples r with elements
r[x][yl.

The quantization parameter P is derived as follows:
* P = Qp[cldx] + QpBdOffset
The MBIKW)x(nBlkH) array of reconstructed samples r is derived as follows:

* The scaling process for transform coefficients as specified in Section 6.3.1 is invoked with
the block location (xBIkY, yBIkY), the block width nBIkW and the block height nBIlkH, the
color component variable cIdx, and the quantization parameter P as inputs. The output is
an (nBlkW)x(nBlkH) array of scaled transform coefficients d.

* The transformation process for scaled transform coefficients as specified in Section 6.3.2 is
invoked with the block location (xBIkY, yBIkY), the block width nBlkW and the block height
nBIKkH, the color component variable cIdx, and the (nBIkW)x(nBlkH) array of scaled
transform coefficients d as inputs. The output is an (nBIkW)x(nBlkH) array of reconstructed
samples r.

* The variable bdShift is derived as follows:
o bdShift = 20 - BitDepth
* The reconstructed sample values r[x][y] with x = 0..nBIKW - 1, y = 0..nBIkH - 1 are modified
as follows:
o r[x][y] = clip(0, (1 << BitDepth)-1, ((r[x][y]+(1 << (bdShift-1)))>>bdShift) + (1 << (BitDepth-1)))

6.3.1. Scaling Process for Transform Coefficients
Inputs to this process are:

* a location (xBIKkY, yBIKY) of the current color component specifying the top-left sample of the
current block relative to the top-left sample of the current frame,

¢ a variable nBIkW specifying the width of the current block,

* a variable nBIkH specifying the height of the current block,

* a variable cldx specifying the color component of the current block, and
* a variable qP specifying the quantization parameter.

Output of this process is the (nNBIkW)x(nBIkH) array d of scaled transform coefficients with
elements d[x][y].

The variable bdShift is derived as follows:

* bdShift = BitDepth + (log2(nBlkW) + log2(nBIkH)) // 2) - 5

Lim, et al. Informational Page 37

RFC 9924 APV February 2026

The list levelScale[] is specified as follows:
* levelScale[Kk] = {40, 45, 51, 57, 64, 71} with k = 0..5.

For the derivation of the scaled transform coefficients d[x][y] with x = 0.nBIkW - 1, y = 0..nBIkH -
1, the following applies:

* The scaled transform coefficient d[x][y] is derived as follows:

o d[x][y] = clip(-32768, 32767, ((TransCoeff[cIdx][xBIkY][yBIkY] * QMatrix[cIdx][x][y] *
levelScale[qP % 6] << (qP//6)) + (1 << (bdShift-1)) >> bdShift))

6.3.2. Process for Scaled Transform Coefficients

6.3.2.1. General
Inputs to this process are:

* a location (xBIKY, yBIKY) of the current color component specifying the top-left sample of the
current block relative to the top-left sample of the current frame,

* a variable nBIkW specifying the width of the current block,
* a variable nBIkH specifying the height of the current block, and
* an (nBlkW)x(nBlkH) array d of scaled transform coefficients with elements d[x][y].

Output of this process is the (nBlkW)x(nBlkH) array r of reconstructed samples with elements
r[x][y].

The (nBlIkW)x(nBlkH) array r of reconstructed samples is derived as follows:

* Each (vertical) column of scaled transform coefficients d[x][y] with x = 0.nBIkW - 1, y =
0.nBIkH - 1 is transformed to e[x][y] with x = 0.nBIkW - 1, y = 0..nBIkH - 1 by invoking the
one-dimensional transformation process as specified in Section 6.3.2.2 for each column x =
0..nBIKW - 1 with the size of the transform block nBlkH, and the list d[x][y] with y = 0..nBIkH
- 1 as inputs. The output is the list e[x][y] with y = 0..nBIkH - 1.

* The following applies:
» glxllyl = (elx]ly] + 64) >> 7

¢ Each (horizontal) row of the resulting array g[x][y] with x = 0.nBlkW - 1, y = 0.nBIkH - 1 is
transformed to r[x][y] with x = 0.nBIkW - 1, y = 0..nBlkH - 1 by invoking the one-dimensional
transformation process as specified in Section 6.3.2.2 for each row y = 0..nBIkH - 1 with the
size of the transform block nBIkW, and the list g[x][y] with x = 0..nBIKW - 1 as inputs. The
output is the list r[x][y] with x = 0..nBIkW - 1.

6.3.2.2. Transformation Process
Inputs to this process are:

* a variable nThS specifying the sample size of scaled transform coefficients, and
* a list of scaled transform coefficients x with elements x[j], with j = 0..(nTbS - 1).

Lim, et al. Informational Page 38

RFC 9924 APV February 2026

Output of this process is the list of transformed samples y with elements y[i], with i = 0..(nThS - 1).

The transformation matrix derivation process as specified in Section 6.3.2.3 is invoked with the
transform size nThS as input, and the transformation matrix transMatrix as output.

The list of transformed samples y[i] with i = 0..(nThS - 1) is derived as follows:

¢ y[i] = sum(j = 0, nThS - 1, transMatrix[i][j] * x[j])

6.3.2.3. Transformation Matrix Derivation Process

Input to this process is a variable nTbS specifying the horizontal sample size of scaled transform
coefficients.

Output of this process is the transformation matrix transMatrix.
The transformation matrix transMatrix is derived based on nTbs as follows:

 If nThS is equal to 8, the following applies:

transMatrix[m][n] =

{
{ 64, 64, 64, 64, 64, 64, 64, 64 }
{ 89, 75, 50, 18, -18, -50, -75, -89 }
{ 84, 35, -35, -84, -84, -35, 35, 84 }
{ 75, -18, -89, -50, 50, 89, 18, -75 }
{ 64, -64, -64, 64, 64, -64, -64, 64 }
{ 50, -89, 18, 75, -75, -18, 89, -50 }
{ 35, -84, 84, -35, -35, 84, -84, 35}
{ 18, -50, 75, -89, 89, -75, 5@, -18 }

}

Figure 25: Transform matrix for nThS ==

7. Parsing Process

7.1. Process for Syntax Element Type h(v)

This process is invoked for the parsing of syntax elements with descriptor h(v) in Section 5.3.15
and Section 5.3.16.

7.1.1. Process for abs_dc_coeff diff

Inputs to this process are bits for the abs_dc_coeff_diff syntax element. Output of this process is a
value of the abs_dc_coeff_diff syntax element. The variable kParam is derived as follows:

kParam = clip(0, 5, PrevDcDiff >> 1)

Lim, et al. Informational Page 39

RFC 9924 APV February 2026

The value of syntax element abs_dc_coeff_diff is obtained by invoking the parsing process for
variable-length codes as specified in Section 7.1.4 with kParam.

7.1.2. Process for coeff zero run

Inputs to this process are bits for the coeff zero_run syntax element.
Output of this process is a value of the coeff_zero_run syntax element.
The variable kParam is derived as follows:

kParam = clip(0, 2, PrevRun >> 2)

The value of syntax element coeff_zero_run is obtained by invoking the parsing process for
variable-length codes as specified in Section 7.1.4 with kParam.

7.1.3. Process for abs_ac_coeff minus1

Inputs to this process are bits for the abs_ac_coeff_minus1 syntax element.
Output of this process is a value of the abs_ac_coeff minus1 syntax element.
The variable kParam is derived as follows:

kParam = clip(0, 4, PrevLevel >> 2)

The value of syntax element abs_ac_coeff_minus1 is obtained by invoking the parsing process
for variable-length codes as specified in Section 7.1.4 with kParam.

7.1.4. Process for Variable-Length Codes

Input to this process is kParam.
Output of this process is a value, symbolValue, of a syntax element.

The symbolValue is derived as follows:

Lim, et al. Informational Page 40

RFC 9924 APV

symbolValue = 0@
parseExpGolomb = 1
k = kParam
stopLoop = 0

if(read_bits(1) ==
parseExpGolomb = @

else{
if(read_bits (1)
symbolValue +=
parseExpGolomb

{
< k)

In—1
=1l
(av]
A
N

else{
symbolValue += (2 << k)
parseExpGolomb =

}

if(parseExpGolomb) {
do{
if(read_bits(1) == 1){
stopLoop = 1

else{
symbolValue += (1 << k)
k++
}
} while(!stopLoop)

if(k > 0)
symbolValue += read_bits(k)

Figure 26: Parsing process of symbolValue

February 2026

where the value returned from read_bits(n) is interpreted as a binary representation of an n-bit

unsigned integer with the most significant bit written first.

7.2. Codeword Generation Process for h(v) (Informative)

This process specifies the code generation process for syntax elements with descriptor h(v).

7.2.1. Process for abs_dc_coeff diff

Input to this process is a symbol value of the abs_dc_coeff_diff syntax element.

Output of this process is a codeword of the abs_dc_coeff_diff syntax element.

The variable kParam is derived as follows:

kParam = clip(0, 5, PrevDcDiff >> 1)

Lim, et al. Informational

Page 41

RFC 9924 APV February 2026

The codeword of syntax element abs_dc_coeff_diff is obtained by invoking the generation
process for variable-length codes as specified in Section 7.2.4 with the symbol value symbolValue
and kParam.

7.2.2. Process for coeff zero run

Input to this process is a symbol value of the coeff_zero_run syntax element.
Output of this process is a codeword of the coeff_zero_run syntax element.
The variable kParam is derived as follows:

kParam = clip(0, 2, PrevRun >> 2)

The codeword of syntax element coeff_zero_run is obtained by invoking the generation process
for variable-length codes as specified in Section 7.2.4 with the symbol value symbolValue and
kParam.

7.2.3. Process for abs_ac_coeff minus1

Input to this process is a symbol value of the abs_ac_coeff_minus1 syntax element.
Output of this process is a codeword of the abs_ac_coeff_minus1 syntax element.
The variable kParam is derived as follows:

kParam = clip(0, 4, PrevLevel >> 2)

The codeword of syntax element abs_ac_coeff_minus1 is obtained by invoking the generation for
variable-length codes as specified in Section 7.2.4 with the symbol value symbolValue and
kParam.

7.2.4. Process for Variable-Length Codes

Inputs to this process are symbolVal and kParam
Output of this process is a codeword of a syntax element.

The codeword is derived as follows:

Lim, et al. Informational Page 42

RFC 9924 APV February 2026

PrefixVLCTable[3][2] = {{1, 0}, {0, @}, {0, 1}}

symbolValue = symbolVal

valPrefixVLC = clip(®, 2, symbolVal >> kParam)
bitCount = ©

k = kParam

while(symbolValue >= (1 << k)){

symbolValue -= (1 << k)

if(bitCount < 2)
put_bits(PrefixVLCTable[valPrefixVLC][bitCount], 1)

else
put_bits(0, 1)

if(bitCount >= 2)
k++

bitCount++

}

if(bitCount < 2)
put_bits(PrefixVLCTable[valPrefixVLC][bitCount], 1)
else
put_bits(1, 1)
if(k > 0)
put_bits(symbolValue, k)
Figure 27: Generating bits from symbolValue

where a codeword generated from put_bits(v, n) is interpreted as a binary representation of an
n-bit unsigned integer value v with the most significant bit written first.

8. Metadata Information

8.1. Metadata Payload

Lim, et al. Informational Page 43

RFC 9924 APV

syntax code

metadata_payload(payloadType, payloadSize){
if(payloadType == 4){
metadata_itu_t_t35(payloadSize)

}
else if(payloadType == 5){
metadata_mdcv(payloadSize)

}
else if(payloadType == 6){
metadata_cll(payloadSize)

}
else if(payloadType == 10){
metadata_filler(payloadSize)

}
else if(payloadType == 170){
metadata_user_defined(payloadSize)

else{
metadata_undefined(payloadSize)

}
byte_alignment()

Figure 28: metadata_payload() syntax code

The syntax and semantics of each type of metadata are defined in Section 8.2.

8.2. List of Metadata Syntax and Semantics
8.2.1. Filler Metadata

syntax code

|
|
metadata_filler(payloadSize){
for(i = @; i < payloadSize; i++){
ff_byte |
} I
|

}

ff_byte
is a byte equal to OXFF.

8.2.2. Recommendation ITU-T T.35 Metadata

This metadata contains information registered as specified in [ITUT-T35].

Lim, et al. Informational

February 2026

Page 44

RFC 9924 APV February 2026

syntax code

metadata_itu_t_t35(payloadSize){
itu_t_t35_country_code
readSize = payloadSize - 1

if(itu_t_t35_country_code == OxFF){
itu_t_t35_country_code_extension
readSize--

}

for(i = 0; i < readSize; i++){
itu_t_t35_payload[i]
}

b(8)

(on
—~
(0]
~

}

Figure 29: metadata_itu_t_t35() syntax code

itu_t_t35_country_code
MUST be a byte having the semantics of country code as specified in Annex A of [ITUT-T35].

itu_t_t35_country_code_extension
MUST be a byte having the semantics of country code as specified in Annex B of [ITUT-T35].

itu_t_t35_payloadli]
MUST be a byte having the semantics of data registered as specified in [ITUT-T35].

The terminal provider code and terminal provider oriented code as specified in [ITUT-T35] MUST
be contained in the first one or more bytes of the itu_t_t35_payload. Any remaining bytes in
itu_t_t35_payload data MUST be data having syntax and semantics as specified by the entity
identified by the [ITUT-T35] country code and terminal provider code. Note that any metadata to
be carried with this type of payload is expected to have been registered through either national
administrator, the Alliance for Telecommuncations Industry Solutions (ATIS) or the ITUT-T
Telecommnunication Standardization Bureau (TSB) as specified in [ITUT-T35].

8.2.3. Mastering Display Color Volume Metadata

Lim, et al. Informational Page 45

RFC 9924 APV February 2026

syntax code | type
__ |_____
metadata_mdcv(payloadSize){
for(i = 0; i < 3; i++){
primary_chromaticity_x[i] | u(16)
primary_chromaticity_y[i] | u(16)
I
white_point_chromaticity_x | u(16)
white_point_chromaticity_y | u(16)
max_mastering_luminance | u(32)
min_mastering_luminance | u(32)
I

Figure 30: metadata_mdcv() syntax code

primary_chromaticity_x[i]
specifies a 0.16 fixed-point format of X chromaticity coordinate of mastering display in terms
of CIE 1931 as specified in [[SO11664-1], where i = 0, 1, 2 specifies Red, Green, Blue,
respectively.

primary_chromaticity_yl[i]
specifies a 0.16 fixed-point format of Y chromaticity coordinate of mastering display in terms
of CIE 1931 as specified in [ISO11664-1], where i = 0, 1, 2 specifies Red, Green, Blue,
respectively.

white_point_chromaticity_x
specifies a 0.16 fixed-point format of white point X chromaticity coordinate of mastering
display in terms of CIE 1931 as specified in [ISO11664-1].

white_point_chromaticity_y
specifies a 0.16 fixed-point format of white point Y chromaticity coordinate as mastering
display in terms of CIE 1931 as specified in [[SO11664-1].

max_mastering_luminance
is a 24.8 fixed-point format of maximum display mastering luminance, represented in
candelas per square meter.

min_mastering luminance
is an 18.14 fixed-point format of minimum display mastering luminance, represented in
candelas per square meter.

8.2.4. Content Light-Level Information Metadata

Lim, et al. Informational Page 46

RFC 9924 APV February 2026

syntax code

|
|
metadata_cll(payloadSize){ |
max_cll | u(16)
| u(16
|

max_fall
}

Figure 31: metadata_cll() syntax code

max_cll
specifies the maximum content light level information as specified in [CTA-861.3], Appendix
A.

max_fall
specifies the maximum frame-average light level information as specified in [CTA-861.3],
Appendix A.

8.2.5. User-Defined Metadata

This metadata has user data identified by a universal unique identifier as specified in [RFC9562],
the contents of which are not specified in this document.

syntax code | type

metadata_user_defined(payloadSize){

uuid | u(128)
for(i = 0; i < (payloadSize - 16); i++) |
user_defined_data_payload[i] | b(8)
|

Figure 32: metadata_user_defined() syntax code

uuid
MUST be a 128-bit value specified as a generated Universally Unique Identifier (UUID)
according to the procedures specified in [RFC9562].

user_defined_data_payload/[i]
MUST be a byte having user-defined syntax and semantics as specified by the UUID generator.

8.2.6. Undefined Metadata

Lim, et al. Informational Page 47

RFC 9924 APV February 2026

}

syntax code | type
__ |_____
metadata_undefined(payloadSize){ |
for(i = @; i < payloadSize; i++){ |
undefined_metadata_payload_byte[i] | b(8)
|
|

}

Figure 33: metadata_undefined() syntax code

undefined_metadata_payload_byte[i]
is a byte reserved for future use.

9. Profiles, Levels, and Bands

9.1. Overview of Profiles, Levels, and Bands

Profiles, levels, and bands specify restrictions on a coded frame and hence limits on the
capabilities needed to decode the coded frame. Profiles, levels, and bands are also used to
indicate interoperability points between individual decoder implementations.

Each profile specifies a subset of algorithmic features and limits that MUST be supported by all
decoders conforming to that profile.

NOTE: This document does not include individually selectable "options" at the decoder, as
this would increase interoperability difficulties.

NOTE: Encoders are not required to make use of any particular subset of features supported
in a profile.

Each level with a band specifies a set of limits on the values that may be taken by the syntax
elements of this document. For any given profile, a level with a band generally corresponds to a
particular decoder processing load and memory capability. The constraints set by levels and
bands are orthogonal to the constraints defined by profiles so that the same set of level and band
definitions is used with all profiles. For example, a certain level L and a certain band B can be
combined with either profile X or profile Y to specifically define two different sets of constraints.

NOTE: Individual implementations may support a different level for each supported profile.

9.2. Requirements on Video Decoder Capability

Capabilities of video decoders conforming to this document are specified in terms of the ability
to decode video streams conforming to the constraints of profiles, levels, and bands specified in
this section. When expressing the capabilities of a decoder for a specified profile, the level and
the band supported for that profile MUST also be expressed.

Lim, et al. Informational Page 48

RFC 9924 APV February 2026

Specific values are specified for the syntax elements profile_idc, level _idc, and band_idc. All
other values of profile_idc, level_idc, and band_idc are reserved for future use.

NOTE: Decoders SHALL NOT infer that a reserved value of profile_idc between the values
specified in this document indicates intermediate capabilities between the specified profiles,
as there are no restrictions on the method to be chosen for the use of such future reserved
values. However, decoders MUST infer that a reserved value of level_idc and a reserved value
of band_idc between the values specified in this document indicates intermediate capabilities
between the specified levels.

9.3. Profiles
9.3.1. General

All constraints for a coded frame that are specified are constraints for the coded frame that are
activated when the bitstream of the access unit is decoded.

9.3.2. 422-10 Profile

Conformance of a coded frame to the 422-10 profile is indicated by profile_idc equal to 33.

Coded frames conforming to the 422-10 profile MUST obey the following constraints:

* chroma_format_idc MUST be equal to 2.
* bit_depth_minus8 MUST be equal to 2.
* pbu_type MUST be equal to 1.

Coded frames conforming to the 422-10 profile MUST also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 422-10 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B) MUST
be capable of decoding all coded frames for which all of the following conditions apply:

* The coded frame is indicated to conform to the 422-10 profile.

» The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.

* The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

9.3.3. 422-12 Profile
Conformance of a coded frame to the 422-12 profile is indicated by profile_idc equal to 44.

Coded frames conforming to the 422-12 profile MUST obey the following constraints:

* chroma_format_idc MUST be equal to 2.
* bit_depth_minus8 MUST be in the range of 2 to 4.
* pbu_type MUST be equal to 1.

Lim, et al. Informational Page 49

RFC 9924 APV February 2026

Coded frames conforming to the 422-12 profile MUST also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 422-12 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B) MUST
be capable of decoding all coded frames for which all of the following conditions apply:

* The coded frame is indicated to conform to the 422-12 profile or the 422-10 profile.

» The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.

* The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

9.3.4. 444-10 Profile
Conformance of a coded frame to the 444-10 profile is indicated by profile_idc equal to 55.

Coded frames conforming to the 444-10 profile MUST obey the following constraints:

* chroma_format_idc MUST be in the range of 2 to 3.
* bit_depth_minus8 MUST be equal to 2.
* pbu_type MUST be equal to 1.

Coded frames conforming to the 444-10 profile MUST also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 444-10 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B) MUST
be capable of decoding all coded frames for which all of the following conditions apply:

* The coded frame is indicated to conform to the 444-10 profile or the 422-10 profile.

* The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.

* The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

9.3.5. 444-12 Profile
Conformance of a coded frame to the 444-12 profile is indicated by profile_idc equal to 66.

Coded frames conforming to the 444-12 profile MUST obey the following constraints:

* chroma_format_idc MUST be in the range of 2 to 3.
* bit_depth_minus8 MUST be in the range of 2 to 4.
* pbu_type MUST be equal to 1.

Lim, et al. Informational Page 50

RFC 9924 APV February 2026

Coded frames conforming to the 444-12 profile MUST also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 444-12 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B) MUST
be capable of decoding all coded frames for which all of the following conditions apply:

* The coded frame is indicated to conform to the 444-12 profile, the 444-10 profile, the 422-12
profile, or the 422-10 profile.

* The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.

* The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

9.3.6. 4444-10 Profile
Conformance of a coded frame to the 4444-10 profile is indicated by profile_idc equal to 77.

Coded frames conforming to the 4444-10 profile MUST obey the following constraints:

* chroma_format_idc MUST be in the range of 2 to 4.
* bit_depth_minus8 MUST be equal to 2.
* pbu_type MUST be equal to 1.

Coded frames conforming to the 4444-10 profile MUST also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 4444-10 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B) MUST
be capable of decoding all coded frames for which all of the following conditions apply:

* The coded frame is indicated to conform to the 4444-10 profile, the 444-10 profile, or the
422-10 profile.

» The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.

* The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

9.3.7. 4444-12 Profile
Conformance of a coded frame to the 4444-12 profile is indicated by profile_idc equal to 88.

Coded frames conforming to the 4444-12 profile MUST obey the following constraints:

* chroma_format_idc MUST be in the range of 2 to 4.
* bit_depth_minus8 MUST be in the range of 2 to 4.
* pbu_type MUST be equal to 1.

Lim, et al. Informational Page 51

RFC 9924 APV February 2026

Coded frames conforming to the 4444-12 profile MUST also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 4444-12 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B) MUST
be capable of decoding all coded frames for which all of the following conditions apply:

* The coded frame is indicated to conform to the 4444-12 profile, the 4444-10 profile, the
444-12 profile, the 444-10 profile, the 422-12 profile, or the 422-10 profile.

* The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.

* The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

9.3.8. 400-10 Profile
Conformance of a coded frame to the 400-10 profile is indicated by profile_idc equal to 99.

Coded frames conforming to the 400-10 profile MUST obey the following constraints:

* chroma_format_idc MUST be equal to 0.
* bit_depth_minus8 MUST be equal to 2.
* pbu_type MUST be equal to 1.

Coded frames conforming to the 400-10 profile MUST also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 400-10 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B) MUST
be capable of decoding all coded frames for which all of the following conditions apply:

* The coded frame is indicated to conform to the 400-10 profile.

* The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.

* The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

9.4. Levels and Bands

9.4.1. General

For purposes of comparison of level capabilities, a particular level of each band is considered to
be a lower level than some other level when the value of the level_idc of the particular level of
each band is less than that of the other level.

* The luma sample rate (luma samples per second) MUST be less than or equal to the "Max
luma sample rate".

* The coded data rate (bits per second) MUST be less than or equal to the "Max luma sample
rate".

* The value of tile_width_in_mbs MUST be greater than or equal to 16.
* The value of tile_height_in_mbs MUST be greater than or equal to 8.

Lim, et al. Informational Page 52

RFC 9924

APV

* The value of TileCols MUST be less than or equal to 20.
* The value of TileRows MUST be less than or equal to 20.

9.4.2. Limits of Levels and Bands

February 2026

Table 4 specifies the limits for each level of each band. A level to which a coded frame conforms
is indicated by the syntax elements level_idc and band_idc as follows:

¢ level_idc MUST be set equal to a value of 30 times the level number specified in Table 4.

level

11

2

2.1

3

3.1

4

4.1

5

5.1

6

6.1

7

7.1

Max luma sample rate (sample/sec)

3,041,280
6,082,560
15,667,200
31,334,400
66,846,720
133,693,440
265,420,800
530,841,600
1,061,683,200
2,123,366,400
4,7717,574,400
8,493,465,600
16,986,931,200

33,973,862,400

Table 4: General level limits

Max coded data rate (Mbits/sec)

16

39

78

114
227
455
910
1,820
3,639
7,278
14,556
29,111

58,222

band_idc==
1 2
11 15
21 30
54 76
108 152
159 222
317 444
637 892
1,274 1,784
2,548 3,567
5,095 7,133
10,189 14,265
20,378 28,529
40,756 57,058
81,511 114,115

3

23

45

114
227
333
666
1,338
2,675
5,350
10,699
21,397
42,793
85,586

171,172

Table 5 shows widely used typical configurations of resolution and frame rates of video and
corresponding levels for them.

Lim, et al.

Informational

Page 53

RFC 9924 APV February 2026

use case resolution frame per second luma sample per second level

720p 1280 x 720 30 27,648,000 2.1
FHD 1920 x 1080 30 62,208,000 3
UHD 4K 3840 x 2160 60 497,664,000 4.1

UHD 4K 3840 x 2160 120 995,328,000 5
UHD 8K 7680 x 4320 60 1,990,656,000 5.1
UHD 8K 7680 x 4320 120 3,981,312,000 6

Table 5: Example of typical video configurations and corresponding levels (informative)

10. Security Considerations

Like any other audio or video codec, APV should not be used with insecure ciphers or cipher
modes that are vulnerable to known plaintext attacks. Some of the header bits as well as the
padding are easily predictable.

A decoder MUST be robust against any non-compliant or malicious payloads. Malicious payloads
MUST NOT cause the decoder to overrun its allocated memory or to take an excessive amount of
resources to decode. An overrun in allocated memory could lead to arbitrary code execution by
an attacker. The same applies to the encoder, even though problems in encoders are typically
rare. Malicious video streams MUST NOT cause the encoder to misbehave because this would
allow an attacker to attack transcoding gateways. A frequent security problem in image and
video codecs is failure to check for integer overflows. An example is allocating "frame_width *
frame_height" in pixel count computations without considering that the multiplication result
may have overflowed the range of the arithmetic type. The implementation MUST ensure that
any data outside of allocated and initialized memory cannot be read.

A decoder MUST NOT try to process the metadata whose type is not recognized by the
implementation. Failure to process any metadata exactly according to the syntax structure
specified MAY put a decoder in an unknown status.

None of the content carried in APV is intended to be executable.

11. TIANA Considerations

This document has no actions for IANA.

12. References

12.1. Normative References

Lim, et al. Informational Page 54

RFC 9924 APV February 2026

[CIE15] CIE, "Colorimetry, 4th Edition", DOI 10.25039/TR.015.2018, 2018, <https://cie.co.at/
publications/colorimetry-4th-edition>.

[CTA-861.3] CTA, "HDR Static Metadata Extensions", CTA-861.3-A, September 2019.

[H273] ITU-T, "Coding-independent code points for video signal type identification”,
ITU-T Recommendation H.273, ISO/IEC 23091-2:2025, July 2024, <https://
www.itu.int/rec/T-REC-H.273>.

[ISO11664-1] ISO, "Colorimetry - Part 1: CIE standard colorimetric observers", ISO/CIE
11664-1:2019, 2019, <https://www.iso.org/standard/74164.html>.

[IS09899] ISO/IEC, "Information technology - Programming languages - C", ISO/IEC
9899:2024, 2024, <https://www.iso.org/standard/82075.html>.

[ITUT-T35] ITU-T, "Procedure for the allocation of ITU-T defined codes for non-standard
facilities", ITU-T Recommendation T.35, February 2000, <https://www.itu.int/rec/
T-REC-T.35>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

[RFC9562] Davis, K., Peabody, B., and P. Leach, "Universally Unique IDentifiers (UUIDs)",
RFC 9562, DOI 10.17487/RFC9562, May 2024, <https://www.rfc-editor.org/info/
rfc9562>.

12.2. Informative References

[AMPAS] "Academy of Motion Picture Arts and Science", <https://www.oscars.org/>.

[AOSP16APV] "Android open source project version 16", <https://developer.android.com/about/
versions/16/features#apv>.

[ASWF] "The Academy Software Foundation", <https://www.aswf.io/>.

[FFmpegAPVdec] "FFmpegimplementation of APV decoder”, 20 November 2025, <https://
ffmpeg.org/download.html#release_8.0>.

[FFmpegAPVenc] "FFmpegimplementation of APV encoder", 4 May 2025, <https://
git.ffmpeg.org/gitweb/ffmpeg.git/commit/
fab691edaf53bbf10429ef3448f1f274e5078395>.

[OpenAPV] "OpenAPV", commit 1a7845a, 16 December 2025, <https://github.com/
AcademySoftwareFoundation/openapv>.

Lim, et al. Informational Page 55

https://cie.co.at/publications/colorimetry-4th-edition
https://cie.co.at/publications/colorimetry-4th-edition
https://www.itu.int/rec/T-REC-H.273
https://www.itu.int/rec/T-REC-H.273
https://www.iso.org/standard/74164.html
https://www.iso.org/standard/82075.html
https://www.itu.int/rec/T-REC-T.35
https://www.itu.int/rec/T-REC-T.35
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9562
https://www.rfc-editor.org/info/rfc9562
https://www.oscars.org/
https://developer.android.com/about/versions/16/features#apv
https://developer.android.com/about/versions/16/features#apv
https://www.aswf.io/
https://ffmpeg.org/download.html#release_8.0
https://ffmpeg.org/download.html#release_8.0
https://git.ffmpeg.org/gitweb/ffmpeg.git/commit/fab691edaf53bbf10429ef3448f1f274e5078395
https://git.ffmpeg.org/gitweb/ffmpeg.git/commit/fab691edaf53bbf10429ef3448f1f274e5078395
https://git.ffmpeg.org/gitweb/ffmpeg.git/commit/fab691edaf53bbf10429ef3448f1f274e5078395
https://github.com/AcademySoftwareFoundation/openapv
https://github.com/AcademySoftwareFoundation/openapv

RFC 9924 APV February 2026

Appendix A. Raw Bitstream Format

syntax code | type

raw_bitstream_access_unit(){ |
au_size |
access_unit(au_size) |
I

Figure 34: raw_bitstream_access_unit() syntax code

au_size
indicates the size of access unit in bytes. 0 is prohibited and OXFFFFFFFF is reserved.

Appendix B. APV Implementations

B.1. OpenAPV Open Source Project

The Academy Software Foundation (ASWF) [ASWF], jointly founded by the Academy of Motion
Picture Arts and Science (AMPAS) [AMPAS] and the Linux Foundation, has created an open
source software development project conformant to this document [OpenAPV]. The project also
provides various test vectors for verification of the implementations at <https://github.com/
AcademySoftwareFoundation/openapv/tree/main/test/bitstream>.

B.2. Android Open Source Project

The Android open source project (AOSP) has implemented Advanced Professional Video (APV)
conformant to this document [AOSP16APV].

B.3. FFmpeg Open Source Project

The FFmpeg project is developing an APV decoder [FFmpegAPVdec] and an APV encoder
[FFmpegAPVenc] conformant to this document.

Authors' Addresses

Youngkwon Lim

Samsung Electronics

6105 Tennyson Pkwy, Ste 300
Plano, TX 75024

United States of America
Email: yklwhite@gmail.com

Lim, et al. Informational Page 56

https://github.com/AcademySoftwareFoundation/openapv/tree/main/test/bitstream
https://github.com/AcademySoftwareFoundation/openapv/tree/main/test/bitstream
mailto:yklwhite@gmail.com

RFC 9924 APV February 2026

Minwoo Park

Samsung Electronics

34, Seongchon-gil, Seocho-gu
Seoul

3573

Republic of Korea

Email: m.w.park@samsung.com

Madhukar Budagavi

Samsung Electronics

6105 Tennyson Pkwy, Ste 300
Plano, TX 75024

United States of America

Email: m.budagavi@samsung.com

Rajan Joshi

Samsung Electronics

11488 Tree Hollow Ln

San Diego, CA 92128

United States of America
Email: rajan_joshi@ieee.org

Kwang Pyo Choi

Samsung Electronics

34 Seongchon-gil Seocho-gu

Seoul

3573

Republic of Korea

Email: kwangpyo.choi@gmail.com

Lim, et al. Informational Page 57

mailto:m.w.park@samsung.com
mailto:m.budagavi@samsung.com
mailto:rajan_joshi@ieee.org
mailto:kwangpyo.choi@gmail.com

	RFC 9924
	Advanced Professional Video
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terms
	2.1. Terms and Definitions
	2.2. Abbreviated Terms

	3. Conventions Used in This Document
	3.1. General
	3.2. Operators
	3.2.1. Arithmetic Operators
	3.2.2. Bitwise Operators

	3.3. Range Notation
	3.3.1. Order of Operations Precedence

	3.4. Variables, Syntax Elements, and Tables
	3.5. Processes

	4. Formats and Processes Used in This Document
	4.1. Bitstream Formats
	4.2. Source, Decoded, and Output Frame Formats
	4.3. Partitioning of a Frame
	4.3.1. Partitioning of a Frame into Tiles
	4.3.2. Spatial or Component-Wise Partitioning

	4.4. Scanning Processes
	4.4.1. Zig-Zag Scan
	4.4.2. Inverse Scan

	5. Syntax and Semantics
	5.1. Method of Specifying Syntax
	5.2. Syntax Functions and Descriptors
	5.2.1. byte_aligned()
	5.2.2. more_data_in_tile()
	5.2.3. next_bits(n)
	5.2.4. read_bits(n)
	5.2.5. Syntax Element Processing Functions

	5.3. List of Syntax and Semantics
	5.3.1. Access Unit
	5.3.2. Primitive Bitstream Unit
	5.3.3. Primitive Bitstream Unit Header
	5.3.4. Frame
	5.3.5. Frame Header
	5.3.6. Frame Information
	5.3.7. Quantization Matrix
	5.3.8. Tile Info
	5.3.9. Access Unit Information
	5.3.10. Metadata
	5.3.11. Filler
	5.3.12. Tile
	5.3.13. Tile header
	5.3.14. Tile Data
	5.3.15. Macroblock Layer
	5.3.16. AC Coefficient Coding
	5.3.17. Byte Alignment

	6. Decoding Process
	6.1. MB Decoding Process
	6.2. Block Reconstruction Process
	6.3. Scaling and Transformation Process
	6.3.1. Scaling Process for Transform Coefficients
	6.3.2. Process for Scaled Transform Coefficients
	6.3.2.1. General
	6.3.2.2. Transformation Process
	6.3.2.3. Transformation Matrix Derivation Process

	7. Parsing Process
	7.1. Process for Syntax Element Type h(v)
	7.1.1. Process for abs_dc_coeff_diff
	7.1.2. Process for coeff_zero_run
	7.1.3. Process for abs_ac_coeff_minus1
	7.1.4. Process for Variable-Length Codes

	7.2. Codeword Generation Process for h(v) (Informative)
	7.2.1. Process for abs_dc_coeff_diff
	7.2.2. Process for coeff_zero_run
	7.2.3. Process for abs_ac_coeff_minus1
	7.2.4. Process for Variable-Length Codes

	8. Metadata Information
	8.1. Metadata Payload
	8.2. List of Metadata Syntax and Semantics
	8.2.1. Filler Metadata
	8.2.2. Recommendation ITU-T T.35 Metadata
	8.2.3. Mastering Display Color Volume Metadata
	8.2.4. Content Light-Level Information Metadata
	8.2.5. User-Defined Metadata
	8.2.6. Undefined Metadata

	9. Profiles, Levels, and Bands
	9.1. Overview of Profiles, Levels, and Bands
	9.2. Requirements on Video Decoder Capability
	9.3. Profiles
	9.3.1. General
	9.3.2. 422-10 Profile
	9.3.3. 422-12 Profile
	9.3.4. 444-10 Profile
	9.3.5. 444-12 Profile
	9.3.6. 4444-10 Profile
	9.3.7. 4444-12 Profile
	9.3.8. 400-10 Profile

	9.4. Levels and Bands
	9.4.1. General
	9.4.2. Limits of Levels and Bands

	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Raw Bitstream Format
	Appendix B. APV Implementations
	B.1. OpenAPV Open Source Project
	B.2. Android Open Source Project
	B.3. FFmpeg Open Source Project

	Authors' Addresses

