
RFC 9924
Advanced Professional Video

Abstract
This document describes the bitstream format of Advanced Professional Video (APV) and its
decoding process. APV is a professional video codec providing visually lossless compression
mainly for recording and post production.

Stream: Independent Submission
RFC: 9924
Category: Informational
Published: February 2026
ISSN: 2070-1721
Authors:

Y. Lim
Samsung Electronics

M. Park
Samsung Electronics

M. Budagavi
Samsung Electronics

R. Joshi
Samsung Electronics

K. Choi
Samsung Electronics

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9924

Copyright Notice
Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Lim, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9924
https://www.rfc-editor.org/info/rfc9924
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terms

2.1. Terms and Definitions

2.2. Abbreviated Terms

3. Conventions Used in This Document

3.1. General

3.2. Operators

3.2.1. Arithmetic Operators

3.2.2. Bitwise Operators

3.3. Range Notation

3.3.1. Order of Operations Precedence

3.4. Variables, Syntax Elements, and Tables

3.5. Processes

4. Formats and Processes Used in This Document

4.1. Bitstream Formats

4.2. Source, Decoded, and Output Frame Formats

4.3. Partitioning of a Frame

4.3.1. Partitioning of a Frame into Tiles

4.3.2. Spatial or Component-Wise Partitioning

4.4. Scanning Processes

4.4.1. Zig-Zag Scan

4.4.2. Inverse Scan

5. Syntax and Semantics

5.1. Method of Specifying Syntax

5.2. Syntax Functions and Descriptors

5.2.1. byte_aligned()

5.2.2. more_data_in_tile()

5

6

6

8

8

8

8

8

9

9

9

10

11

12

12

12

14

14

15

15

15

17

17

17

18

18

18

RFC 9924 APV February 2026

Lim, et al. Informational Page 2

5.2.3. next_bits(n)

5.2.4. read_bits(n)

5.2.5. Syntax Element Processing Functions

5.3. List of Syntax and Semantics

5.3.1. Access Unit

5.3.2. Primitive Bitstream Unit

5.3.3. Primitive Bitstream Unit Header

5.3.4. Frame

5.3.5. Frame Header

5.3.6. Frame Information

5.3.7. Quantization Matrix

5.3.8. Tile Info

5.3.9. Access Unit Information

5.3.10. Metadata

5.3.11. Filler

5.3.12. Tile

5.3.13. Tile header

5.3.14. Tile Data

5.3.15. Macroblock Layer

5.3.16. AC Coefficient Coding

5.3.17. Byte Alignment

6. Decoding Process

6.1. MB Decoding Process

6.2. Block Reconstruction Process

6.3. Scaling and Transformation Process

6.3.1. Scaling Process for Transform Coefficients

6.3.2. Process for Scaled Transform Coefficients

7. Parsing Process

7.1. Process for Syntax Element Type h(v)

7.1.1. Process for abs_dc_coeff_diff

18

18

18

19

19

19

20

21

22

23

25

25

26

27

28

29

29

30

31

32

34

34

35

36

36

37

38

39

39

39

RFC 9924 APV February 2026

Lim, et al. Informational Page 3

7.1.2. Process for coeff_zero_run

7.1.3. Process for abs_ac_coeff_minus1

7.1.4. Process for Variable-Length Codes

7.2. Codeword Generation Process for h(v) (Informative)

7.2.1. Process for abs_dc_coeff_diff

7.2.2. Process for coeff_zero_run

7.2.3. Process for abs_ac_coeff_minus1

7.2.4. Process for Variable-Length Codes

8. Metadata Information

8.1. Metadata Payload

8.2. List of Metadata Syntax and Semantics

8.2.1. Filler Metadata

8.2.2. Recommendation ITU-T T.35 Metadata

8.2.3. Mastering Display Color Volume Metadata

8.2.4. Content Light-Level Information Metadata

8.2.5. User-Defined Metadata

8.2.6. Undefined Metadata

9. Profiles, Levels, and Bands

9.1. Overview of Profiles, Levels, and Bands

9.2. Requirements on Video Decoder Capability

9.3. Profiles

9.3.1. General

9.3.2. 422-10 Profile

9.3.3. 422-12 Profile

9.3.4. 444-10 Profile

9.3.5. 444-12 Profile

9.3.6. 4444-10 Profile

9.3.7. 4444-12 Profile

9.3.8. 400-10 Profile

40

40

40

41

41

42

42

42

43

43

44

44

44

45

46

47

47

48

48

48

49

49

49

49

50

50

51

51

52

RFC 9924 APV February 2026

Lim, et al. Informational Page 4

9.4. Levels and Bands

9.4.1. General

9.4.2. Limits of Levels and Bands

10. Security Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Raw Bitstream Format

Appendix B. APV Implementations

B.1. OpenAPV Open Source Project

B.2. Android Open Source Project

B.3. FFmpeg Open Source Project

Authors' Addresses

52

52

53

54

54

54

54

55

56

56

56

56

56

56

1. Introduction
This document defines the bitstream format and decoding process for the Advanced Professional
Video (APV) codec. The APV codec is a professional video codec that was developed in response
to the need for professional-level, high-quality video recording and post production. The
primary purpose of the APV codec is for use in professional video recording and editing
workflows for various types of content. This specification is neither the product of the IETF nor a
consensus view of the community.

The APV codec supports the following features:

Perceptually lossless video quality that is close to the original, uncompressed quality;
Low complexity and high throughput intra frame only coding without inter frame coding;
Intra frame coding without prediction between pixel values but with prediction between
transformed values for low delay encoding;
High bit rates of up to a few Gbps for 2K, 4K, and 8K resolution content, enabled by a
lightweight entropy coding scheme;
Frame tiling for immersive content and for enabling parallel encoding and decoding;
Various chroma sampling formats from 4:0:0 to 4:4:4:4, and bit depths from 10 to 16 (Note:
Only the profiles supporting 10 bits and 12 bits are currently defined);

•
•
•

•

•
•

RFC 9924 APV February 2026

Lim, et al. Informational Page 5

The ability to decode and re-encode multiple times without severe visual quality
degradation; and
Various metadata including HDR10/10+ and user-defined formats.

•

•

2. Terms

access unit (AU):

band:

block:

byte-aligned:

chroma:

coded frame:

coded representation:

component:

decoded frame:

decoder:

decoding process:

encoder:

encoding process:

flag:

frame:

level:

2.1. Terms and Definitions

a collection of primitive bitstream units (PBU) including various types of
frames, metadata, filler, and access unit information, associated with a specific time

a defined set of constraints on the value of the maximum coded data rate of each level

MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients

a position in a bitstream that is an integer multiple of 8 bits from the position of
the first bit in the bitstream

a sample array or single sample representing one of the two color difference signals
related to the primary colors, represented by the symbols Cb and Cr in 4:2:2 or 4:4:4 color
format

a coded representation of a frame containing all macroblocks of the frame

a data element as represented in its coded form

an array or a single sample from one of the three arrays (luma and two chroma)
that compose a frame in 4:2:2, or 4:4:4 color format, or an array or a single sample from an
array that compose a frame in 4:0:0 color format, or an array or a single sample from one of
the four arrays that compose a frame in 4:4:4:4 color format.

a frame derived by decoding a coded frame

an embodiment of a decoding process

a process specified that reads a bitstream and derives decoded frames from it

an embodiment of an encoding process

a process that produces a bitstream conforming to this document

a variable or single-bit syntax element that can take one of the two possible values: 0 and 1

an array of luma samples and two corresponding arrays of chroma samples in 4:2:2 and
4:4:4 color format, or an array of samples in 4:0:0 color format, or four arrays of samples in
4:4:4:4 color format

a defined set of constraints on the values that are taken by the syntax elements and
variables of this document, or the value of a transform coefficient prior to scaling

RFC 9924 APV February 2026

Lim, et al. Informational Page 6

luma:

macroblock (MB):

metadata:

partitioning:

prediction:

prediction process:

predictor:

primitive bitstream unit (PBU):

profile:

quantization parameter (QP):

raster scan:

raw bitstream:

source:

syntax element:

syntax structure:

tile:

tile column:

a sample array or single sample representing the monochrome signal related to the
primary colors, represented by the symbol or subscript Y or L

a square block of luma samples and two corresponding blocks of chroma
samples of a frame in 4:2:2 or 4:4:4 color format, or a square block of samples of a frame in
4:0:0 color format, or four square blocks of samples of a frame in 4:4:4:4 color format

data describing various characteristics related to a bitstream without directly
affecting the decoding process of it.

a division of a set into subsets such that each element of the set is in exactly one
of the subsets

an embodiment of the prediction process

use of a predictor to provide an estimate of the data element currently
being decoded

a combination of specified values or previously decoded data elements used in the
decoding process of subsequent data elements

a data structure to construct an access unit with frame and
metadata

a specified subset of the syntax of this document

a variable used by the decoding process for the scaling value of
transform coefficients

a mapping of a rectangular two-dimensional pattern to a one-dimensional pattern
such that the first entries in the one-dimensional pattern are from the top row of the two-
dimensional pattern scanned from left to right, followed by the second, third, etc., rows of the
pattern each scanned from left to right

an encapsulation of a sequence of access units where a field indicating the size
of an access unit precedes each access unit as defined in Appendix A

a term used to describe the video material or some of its attributes before the encoding
process

an element of data represented in the bitstream

zero or more syntax elements present together in a bitstream in a specified
order

a rectangular region of MBs within a particular tile column and a particular tile row in a
frame

a rectangular region of MBs having a height equal to the height of the frame and
width specified by syntax elements in the frame header

RFC 9924 APV February 2026

Lim, et al. Informational Page 7

tile row:

tile scan:

transform coefficient:

a rectangular region of MBs having a height specified by syntax elements in the frame
header and a width equal to the width of the frame

a specific sequential ordering of MBs partitioning a frame in which the MBs are
ordered consecutively in MB raster scan in a tile and the tiles in a frame are ordered
consecutively in a raster scan of the tiles of the frame

a scalar quantity, considered to be in a frequency domain, that is
associated with a particular one-dimensional or two-dimensional index

LSB:

MSB:

RGB:

2.2. Abbreviated Terms

least significant bit

most significant bit

Red, Green and Blue

3. Conventions Used in This Document

3.1. General
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3.2. Operators
The operators and the order of precedence are the same as used in the C programming language

. However, there are some exceptions for the operators described in the Section 3.2.1
and Section 3.2.2, which follows widely used industry practices for video codecs.
[ISO9899]

3.2.1. Arithmetic Operators

//
an integer division with rounding of the result toward zero. For example, 7//4 and -7//-4 are
rounded to 1 and -7//4 and 7//-4 are rounded to -1

/ or div(x,y)
a division in mathematical equations where no truncation or rounding is intended

min(x,y)
the minimum value of the values x and y

max(x,y)
the maximum value of the values x and y

RFC 9924 APV February 2026

Lim, et al. Informational Page 8

ceil(x)
the smallest integer value that is larger than or equal to x

clip(x,y,z)
clip(x,y,z)=max(x,min(z,y))

sum (i=x, y, f(i))
a summation of f(i) with i taking all integer values from x up to and including y

log2(x)
the base-2 logarithm of x

3.2.2. Bitwise Operators

& (bit-wise "and")
When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on arguments with unequal bit depths, the bit depths are
equalized by adding zeros in significant positions to the argument with lower bit depth.

| (bit-wise "or")
When operating on integer arguments, operates on a two's complement representation of the
integer value. When operating on arguments with unequal bit depths, the bit depths are
equalized by adding zeros in significant positions to the argument with lower bit depth.

x >> y
arithmetic right shift of a two's complement integer representation of x by y binary digits.
This function is defined only for non-negative integer values of y. Bits shifted into the most
significant bits (MSBs) as a result of the right shift have a value equal to the MSB of x prior to
the shift operation.

x << y
arithmetic left shift of a two's complement integer representation of x by y binary digits. This
function is defined only for non-negative integer values of y. Bits shifted into the least
significant bits (LSBs) as a result of the left shift have a value equal to 0.

3.3. Range Notation

x = y..z
x takes on integer values starting from y to z, inclusive, with x, y, and z being integer
numbers and z being greater than y.

3.3.1. Order of Operations Precedence

When order of precedence is not indicated explicitly by use of parentheses, operations are
evaluated in the following order.

Operations of a higher precedence are evaluated before any operation of a lower
precedence. Table 1 specifies the precedence of operations from highest to lowest;
operations closer to the top of the table indicate a higher precedence.

•

RFC 9924 APV February 2026

Lim, et al. Informational Page 9

Operations of the same precedence are evaluated sequentially from left to right.•

operations (with operands x, y, and z)

"x++", "x--"

"!x", "-x" (as a unary prefix operator)

x^y (power)

"x * y", "x / y", "x // y", "x % y"

"x + y", "x - y", "sum (i=x, y, f(i))"

"x << y", "x >> y"

"x < y", "x <= y", "x > y", "x >= y"

"x == y", "x != y"

"x & y"

"x | y"

"x && y"

"x || y"

"x ? y : z"

"x..y"

"x = y", "x += y", "x -= y"

Table 1: Operation precedence from highest
(top of the table) to lowest (bottom of the
table)

3.4. Variables, Syntax Elements, and Tables
Each syntax element is described by its name in all lowercase letters and its type is provided
next to the syntax code in each row. Each syntax element and multi-byte integers are written in
big endian format. The decoding process behaves according to the value of the syntax element
and to the values of previously decoded syntax elements.

In some cases, the syntax tables may use the values of other variables derived from syntax
elements values. Such variables appear in the syntax tables or text, named by a mixture of lower
case and uppercase letters and without any underscore characters. Variables with names
starting with an uppercase letter are derived for the decoding of the current syntax structure
and all dependent syntax structures. Variables with names starting with an uppercase letter may

RFC 9924 APV February 2026

Lim, et al. Informational Page 10

be used in the decoding process for later syntax structures without mentioning the originating
syntax structure of the variable. Variables with names starting with a lowercase letter are only
used within the section in which they are derived.

Functions that specify properties of the current position in the bitstream are referred to as
syntax functions. These functions are specified in Section 5.2 and assume the existence of a
bitstream pointer with an indication of the position of the next bit to be read by the decoding
process from the bitstream.

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a
matrix. Arrays can either be syntax elements or variables. Square brackets are used for the
indexing of arrays. In reference to a visual depiction of a matrix, the first square bracket is used
as a column (horizontal) index and the second square bracket is used as a row (vertical) index.

A specification of values of the entries in rows and columns of an array may be denoted by {{...}
{...}}, where each inner pair of brackets specifies the values of the elements within a row in
increasing column order and the rows are ordered in increasing row order. Thus, setting a
matrix s equal to {{1 6}{4 9}} specifies that s[0][0] is set equal to 1, s[1][0] is set equal to 6, s[0][1]
is set equal to 4, and s[1][1] is set equal to 9.

Binary notation is indicated by enclosing the string of bit values in single quote marks. For
example, '0b01000001' represents an eight-bit string having only its second and its last bits
(counted from the most to the least significant bit) equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used
instead of binary notation when the number of bits is an integer multiple of 4. For example,
0x41 represents an eight-bit string having only its second and its last bits (counted from the most
to the least significant bit) equal to 1.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is
represented by any value different from zero.

3.5. Processes
Processes are used to describe the decoding of syntax elements. A process has a separate
specification and invoking. When invoking a process, the assignment of variables is specified as
follows:

If the variables at the invoking and the process specification do not have the same name, the
variables are explicitly assigned to lower case input or output variables of the process
specification.
Otherwise (the variables at the invoking and the process specification have the same name),
the assignment is implied.

In the specification of a process, a specific coding block is referred to by the variable name
having a value equal to the address of the specific coding block.

•

•

RFC 9924 APV February 2026

Lim, et al. Informational Page 11

4. Formats and Processes Used in This Document

4.1. Bitstream Formats
This section specifies the bitstream format of the Advanced Professional Video (APV) codec.

A raw bitstream format consists of a sequence of AUs where the field indicating the size of
access units precedes each of them. The raw bitstream format is specified in Appendix A.

4.2. Source, Decoded, and Output Frame Formats
This section specifies the relationship between the source and decoded frames.

The video source that is represented by the bitstream is a sequence of frames.

Source and decoded frames are each comprised of one or more sample arrays:

Monochrome (for example, Luma only)
Luma and two chroma (for example, YCbCr or YCgCo as specified in).
Green, blue, and red (GBR, also known as RGB).
Arrays representing other unspecified tri-stimulus color samplings (for example, YZX, also
known as XYZ as specified in).
Arrays representing other unspecified four color samplings

For the convenience of notation and terminology in this document, the variables and terms
associated with these arrays can be referred to as luma and chroma regardless of the actual
color representation method in use.

The values of the variables SubWidthC, SubHeightC, and NumComps depend on the chroma
format sampling structure as specified in Table 2. The chroma format sampling structure is
signaled through chroma_format_idc. Other values of chroma_format_idc, SubWidthC,
SubHeightC, and NumComps may be specified in future versions of this document.

•
• [H273]
•
•

[CIE15]
•

chroma_format_idc Chroma format SubWidthC SubHeightC NumComps

0 4:0:0 1 1 1

1 reserved reserved reserved reserved

2 4:2:2 2 1 3

3 4:4:4 1 1 3

4 4:4:4:4 1 1 4

RFC 9924 APV February 2026

Lim, et al. Informational Page 12

In 4:0:0 sampling, there is only one sample array that can be considered as the luma array.

In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the
luma array.

In 4:4:4 sampling and 4:4:4:4 sampling, all the sample arrays have the same height and width as
the luma array.

The number of bits necessary for the representation of each of the samples in the luma and
chroma arrays in a video sequence is in the range of 10 to 16, inclusive.

When the value of chroma_format_idc is equal to 2, the chroma samples are co-sited with the
corresponding luma samples; the nominal locations in a frame are as shown in Figure 1.

For each frame, when the value of chroma_format_idc is equal to 3 or 4, all of the array samples
are co-sited; the nominal locations in a frame are as shown in Figure 2.

chroma_format_idc Chroma format SubWidthC SubHeightC NumComps

5..7 reserved reserved reserved reserved

Table 2: SubWidthC, SubHeightC, and NumComps values derived from chroma_format_idc

Figure 1: Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame

 & * & * & * & * & * ...

 & * & * & * & * & * ...

 & * & * & * & * & * ...

 & * & * & * & * & * ...

 ...

& - location where both luma and chroma sample exist
* - location where only luma sample exist

RFC 9924 APV February 2026

Lim, et al. Informational Page 13

Samples are processed in units of MBs. The variables MbWidth and MbHeight, which specify the
width and height of the luma arrays for each MB, are defined as follows:

MbWidth = 16
MbHeight = 16

The variables MbWidthC and MbHeightC, which specify the width and height of the chroma
arrays for each MB, are derived as follows:

MbWidthC = MbWidth // SubWidthC
MbHeightC = MbHeight // SubHeightC

Figure 2: Nominal vertical and horizontal locations of 4:4:4 and 4:4:4:4 luma and chroma samples
in a frame

 & & & & & & & & & & ...

 & & & & & & & & & & ...

 & & & & & & & & & & ...

 & & & & & & & & & & ...

 ...

& - location where both luma and chroma sample exist

•
•

•
•

4.3. Partitioning of a Frame

4.3.1. Partitioning of a Frame into Tiles

This section specifies how a frame is partitioned into tiles.

A frame is divided into tiles. A tile is a group of MBs that cover a rectangular region of a frame
and is processed independently of other tiles. Every tile has the same width and height, except
possibly tiles at the right or bottom frame boundary when the frame width or height is not a
multiple of the tile width or height, respectively. The tiles in a frame are scanned in raster order.
Within a tile, the MBs are scanned in raster order. Each MB is comprised of one (MbWidth) x
(MbHeight) luma array and zero, two, or three corresponding chroma sample arrays.

For example, a frame is divided into 6 tiles (3 tile columns and 2 tile rows) as shown in Figure 3.
In this example, the tile size is defined as 4 column MBs and 4 row MBs. In case of the third and
sixth tiles (in raster order), the tile size is 2 column MBs and 4 row MBs since the frame width is
not a multiple of the tile width.

RFC 9924 APV February 2026

Lim, et al. Informational Page 14

Figure 3: Frame with 10 by 8 MBs that is partitioned into 6 tiles

+===================+===================+=========+
| | | # MB | MB | MB | MB # MB | MB
+-------------------+-------------------+---------+
| | | # MB | MB | MB | MB # MB | MB
+----- tile -----+-------------------+---------+
| | | # MB | MB | MB | MB # MB | MB
+-------------------+-------------------+---------+
| | | # MB | MB | MB | MB # MB | MB
+===================+===================+=========+
MB | MB | MB | MB # MB | MB | MB | MB # MB | MB
+-------------------+-------------------+---------+
MB | MB | MB | MB # MB | MB | MB | MB # MB | MB
+-------------------+-------------------+---------+
MB | MB | MB | MB # MB | MB | MB | MB # MB | MB
+-------------------+-------------------+---------+
MB | MB | MB | MB # MB | MB | MB | MB # MB | MB
+===================+===================+=========+

 #,= tile boundary
 |,- MB boundary

4.3.2. Spatial or Component-Wise Partitioning

The following divisions of processing elements form spatial or component-wise partitioning:

the division of each frame into components;
the division of each frame into tile columns;
the division of each frame into tile rows;
the division of each tile column into tiles;
the division of each tile row into tiles;
the division of each tile into color components;
the division of each tile into MBs;
the division of each MB into blocks.

•
•
•
•
•
•
•
•

4.4. Scanning Processes

4.4.1. Zig-Zag Scan

This process converts a two dimensional array into an one-dimensional array. The process starts
at the top-left position in the block and then moves diagonally, changing direction at the edges of
the block until it reaches the bottom-right position. Figure 4 shows an example of scanning
order for 4x4 size block.

RFC 9924 APV February 2026

Lim, et al. Informational Page 15

Inputs to this process are:

a variable blkWidth specifying the width of a block, and
a variable blkHeight specifying the height of a block.

Output of this process is the array zigZagScan[sPos].

The array index sPos specifies the scan position ranging from 0 to (blkWidth * blkHeight)-1.
Depending on the value of blkWidth and blkHeight, the array zigZagScan is derived as follows:

Figure 4: Example of zig-zag scanning order for 4x4 block

+===================+
00 | 01 | 05 | 06
+-------------------+
02 | 04 | 07 | 12
+-------------------+
03 | 08 | 11 | 13
+-------------------+
09 | 10 | 14 | 15
+===================+

•
•

Figure 5: Pseudo-code for zig-zag scan

pos = 0
zigZagScan[pos] = 0
pos++
for(line = 1; line < (blkWidth + blkHeight - 1); line++){
 if(line % 2){
 x = min(line, blkWidth - 1)
 y = max(0, line - (blkWidth - 1))
 while(x >=0 && y < blkHeight){
 zigZagScan[pos] = y * blkWidth + x
 pos++
 x--
 y++
 }
 }
 else{
 y = min(line, blkHeight - 1)
 x = max(0, line - (blkHeight - 1))
 while(y >= 0 && x < blkWidth){
 zigZagScan[pos] = y * blkWidth + x
 pos++
 x++
 y--
 }
 }
}

RFC 9924 APV February 2026

Lim, et al. Informational Page 16

4.4.2. Inverse Scan

Inputs to this process are:

a variable blkWidth specifying the width of a block, and
a variable blkHeight specifying the height of a block.

Output of this process is the array inverseScan[rPos].

The array index rPos specifies the raster scan position ranging from 0 to (blkWidth *
blkHeight)-1. Depending on the value of blkWidth and blkHeight, the array inverseScan is
derived as follows:

The variable forwardScan is derived by invoking the zig-zag scan order initialization
process as specified in Section 4.4.1 with input parameters blkWidth and blkHeight.
The output variable inverseScan is derived as follows:

•
•

•

•

Figure 6: Pseudo-code for inverse zig-zag scan

for(pos = 0; pos < blkWidth * blkHeight; pos++){
 inverseScan[forwardScan[pos]] = pos
}

5. Syntax and Semantics

5.1. Method of Specifying Syntax
The syntax tables specify a superset of the syntax of all allowed bitstreams. Note that a decoder

 implement some means for identifying entry points into the bitstream and some means to
identify and handle non-conforming bitstreams. The methods for identifying and handling
errors and other such situations are not specified in this document.

The APV bitstream is described using syntax code based on the C programming language
 -- including use of if/else, while, and for -- as well as functions defined within this

document.

The syntax table in syntax code is presented in a two-column format such as shown in Figure 7.
In this form, the type column provides a type referenced in that same line of syntax code by
using the syntax elements processing functions defined in Section 5.2.5.

MUST

[ISO9899]

RFC 9924 APV February 2026

Lim, et al. Informational Page 17

Figure 7: A depiction of type-labeled syntax code for syntax description in this document

syntax code	type
ExampleSyntaxCode(){ |
 operations |
 syntax_element | u(n)
} |

5.2. Syntax Functions and Descriptors
The functions presented in this document are used in the syntactical description. These
functions are expressed in terms of the value of a bitstream pointer that indicates the position of
the next bit to be read by the decoding process from the bitstream.

5.2.1. byte_aligned()

If the current position in the bitstream is on the last bit of a byte, i.e., the next bit in the
bitstream is the first bit in a byte, the return value of byte_aligned() is equal to TRUE.
Otherwise, the return value of byte_aligned() is equal to FALSE.

•

•

5.2.2. more_data_in_tile()

If the current position in the i-th tile() syntax structure is less than TileSize[i] in bytes from
the beginning of the tile_header() syntax structure of the i-th tile, the return value of
more_data_in_tile() is equal to TRUE.
Otherwise, the return value of more_data_in_tile() is equal to FALSE.

•

•

5.2.3. next_bits(n)

This function provides the next n bits in the bitstream for comparison purposes, without
advancing the bitstream pointer.

5.2.4. read_bits(n)

This function indicates that the next n bits from the bitstream are to be read and it advances the
bitstream pointer by n bit positions. When n is equal to 0, read_bits(n) is specified to return a
value equal to 0 and to not advance the bitstream pointer.

b(8):

f(n):

5.2.5. Syntax Element Processing Functions

byte having any pattern of bit string (8 bits). The parsing process for this descriptor is
specified by the return value of the function read_bits(8).

fixed-pattern bit string using n bits written (from left to right) with the left bit first, i.e., big
endian format. The parsing process for this descriptor is specified by the return value of the
function read_bits(n).

RFC 9924 APV February 2026

Lim, et al. Informational Page 18

u(n):

h(v):

unsigned integer using n bits. The parsing process for this descriptor is specified by the
return value of the function read_bits(n) interpreted as a binary representation of an
unsigned integer with the most significant bit written first.

variable-length entropy coded syntax element with the left bit first, i.e., big endian format.
The parsing process for this descriptor is specified in Section 7.1.

5.3. List of Syntax and Semantics

5.3.1. Access Unit

signature
A four-character code that identifies the bitstream as an APV AU. The value be
'aPv1' (0x61507631).

pbu_size
the size of a primitive bitstream unit in bytes. A value of 0 is prohibited and the value of
0xFFFFFFFF for pbu_size is reserved for future use.

Note: An AU consists of one primary frame, zero or more non-primary frames such as a frame
for additional view, zero or more alpha frames, zero or more depth frames, zero or more
preview frames such as a frame with smaller resolution, zero or more metadata, and zero or
more fillers.

Figure 8: access unit syntax code

syntax code	type
access_unit(au_size){ |
 signature | f(32)
 currReadSize = 4 |
 do(){ |
 pbu_size | u(32)
 currReadSize += 4 |
 pbu() |
 currReadSize += pbu_size |
 } while (au_size > currReadSize) |
} |

MUST

5.3.2. Primitive Bitstream Unit

RFC 9924 APV February 2026

Lim, et al. Informational Page 19

Figure 9: primitive bitstream unit syntax code

syntax code	type
pbu(){ |
 pbu_header() |
 if((1 <= pbu_type && pbu_type <=2) || |
 (25 <= pbu_type && pbu_type <= 27)) |
 frame() |
 else if(pbu_type == 65) |
 au_info() |
 else if(pbu_type == 66) |
 metadata() |
 else if (pbu_type == 67) |
 filler() |
} |

5.3.3. Primitive Bitstream Unit Header

pbu_type
indicates the type of data in a PBU listed in Table 3. Other values of pbu_type are reserved for
future use.

Figure 10: primitive bitstream unit header syntax code

syntax code	type
pbu_header(){ |
 pbu_type | u(8)
 group_id | u(16)
 reserved_zero_8bits | u(8)
} |

pbu_type meaning notes

0 reserved

1 primary frame

2 non-primary frame

3...24 reserved

25 preview frame

26 depth frame

RFC 9924 APV February 2026

Lim, et al. Informational Page 20

Note: A PBU with pbu_type equal to 65 (access unit information) may happen in an AU. If it
exists, it be the first PBU in an AU, and it can be ignored by a decoder.

group_id
indicates the identifier to associate a coded frame with metadata. More than two frames can
have the same group_id in a single AU. A primary frame and a non-primary frame have
different group_id values, and two non-primary frames have different group_id values.
When the value of group_id is equal to 0, the value of pbu_type be greater than 64. The
value of 0xFFFF for group_id is reserved for future use.

reserved_zero_8bits
 be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of

reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 ignore PBU with values of reserved_zero_8bits greater
than 0.

pbu_type meaning notes

27 alpha frame

28...64 reserved

65 access unit information

66 metadata

67 filler

68...255 reserved

Table 3: List of PBU types

MUST

MUST
MUST

MUST

MUST

MUST

5.3.4. Frame

Figure 11: frame() syntax code

syntax code	type
frame(){ |
 frame_header() |
 for(i = 0; i < NumTiles; i++){ |
 tile_size[i] | u(32)
 tile(i) |
 } |
 filler() |
} |

RFC 9924 APV February 2026

Lim, et al. Informational Page 21

tile_size[i]
indicates the size in bytes of i-th tile data (i.e., tile(i)) in raster order in a frame. The value of 0
for tile_size[i] is reserved for future use.

The variable TileSize[i] is set equal to tile_size[i].

5.3.5. Frame Header

reserved_zero_8bits
 be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of

reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 ignore PBU with values of reserved_zero_8bits greater
than 0.

color_description_present_flag equal to 1
specifies that color_primaries, transfer_characteristics, and matrix_coefficients are present.
color_description_present_flag equal to 0 specifies that color_primaries,
transfer_characteristics, and matrix_coefficients are not present.

color_primaries
 have the semantics of ColourPrimaries as specified in . When the

color_primaries syntax element is not present, the value of color_primaries is inferred to be
equal to 2.

Figure 12: frame_header() syntax code

syntax code	type
frame_header(){ |
 frame_info() |
 reserved_zero_8bits | u(8)
 color_description_present_flag | u(1)
 if(color_description_present_flag){ |
 color_primaries | u(8)
 transfer_characteristics | u(8)
 matrix_coefficients | u(8)
 full_range_flag | u(1)
 } |
 use_q_matrix | u(1)
 if(use_q_matrix){ |
 quantization_matrix() |
 } |
 tile_info() |
 reserved_zero_8bits | u(8)
 byte_alignment() |
} |

MUST

MUST

MUST [H273]

RFC 9924 APV February 2026

Lim, et al. Informational Page 22

transfer_characteristics
 have the semantics of TransferCharacteristics as specified in . When the

transfer_characteristics syntax element is not present, the value of transfer_characteristics is
inferred to be equal to 2.

matrix_coefficients
 have the semantics of MatrixCoefficients as specified in . When the

matrix_coefficients syntax element is not present, the value of matrix_coefficients is inferred
to be equal to 2.

full_range_flag
 have the semantics of VideoFullRangeFlag as specified in . When the

full_range_flag syntax element is not present, the value of full_range_flag is inferred to be
equal to 0.

use_q_matrix
with a value of 1 specifies that the quantization matrices are present. A value of 0 specifies
that the quantization matrices are not present.

reserved_zero_8bits
 be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of

reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 ignore PBU with values of reserved_zero_8bits greater
than 0.

MUST [H273]

MUST [H273]

MUST [H273]

MUST

MUST

5.3.6. Frame Information

profile_idc
indicates a profile to which the coded frame conforms as specified in Section 9. Bitstreams

 contain values of profiles_idc other than those specified in Section 9. Other values
of profile_idc are reserved for future use.

Figure 13: frame_info() syntax code

syntax code	type
frame_info(){ |
 profile_idc | u(8)
 level_idc | u(8)
 band_idc | u(3)
 reserved_zero_5bits | u(5)
 frame_width | u(24)
 frame_height | u(24)
 chroma_format_idc | u(4)
 bit_depth_minus8 | u(4)
 capture_time_distance | u(8)
 reserved_zero_8bits | u(8)
} |

SHALL NOT

RFC 9924 APV February 2026

Lim, et al. Informational Page 23

level_idc
indicates a level to which the coded frame conforms as specified in Section 9. Bitstreams

 contain values of level_idc other than those specified in Section 9. Other values of
level_idc are reserved for future use.

band_idc
specifies a maximum coded data rate of level_idc as specified in Section 9. Bitstreams

 contain values of band_idc other than those specified in Section 9. The value of band_idc
 be in the range of 0 to 3. Other values of band_idc are reserved for future use.

reserved_zero_5bits
 be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of

reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 ignore PBU with values of reserved_zero_8bits greater
than 0.

frame_width
specifies the width of the frame in units of luma samples. frame_width be a multiple of
2 when chroma_format_idc has a value of 2. The value 0 is reserved for future use.

frame_height
specifies the height of the frame in units of luma samples. The value 0 is reserved for future
use.

The variables FrameWidthInMbsY, FrameHeightInMbsY, FrameWidthInSamplesY,
FrameHeightInSamplesY, FrameWidthInSamplesC, FrameHeightInSamplesC,
FrameSizeInMbsY, and FrameSizeInSamplesY are derived as follows:

FrameWidthInSamplesY = frame_width
FrameHeightInSamplesY = frame_height
FrameWidthInMbsY = ceil(FrameWidthInSamplesY / MbWidth)
FrameHeightInMbsY = ceil(FrameHeightInSamplesY / MbHeight)
FrameWidthInSamplesC = FrameWidthInSamplesY // SubWidthC
FrameHeightInSamplesC = FrameHeightInSamplesY // SubHeightC
FrameSizeInMbsY = FrameWidthInMbsY * FrameHeightInMbsY
FrameSizeInSamplesY = FrameWidthInSamplesY * FrameHeightInSamplesY

chroma_format_idc
specifies the chroma sampling relative to the luma sampling as specified in Table 2. The value
of chroma_format_idc be 0, 2, 3, or 4. Other values are reserved for future use.

bit_depth_minus8
specifies the bit depth of the samples. The variables BitDepth and QpBdOffset are derived as
follows:

BitDepth = bit_depth_minus8 + 8
QpBdOffset = bit_depth_minus8 * 6

SHALL NOT

SHALL
NOT
MUST

MUST

MUST

MUST

•
•
•
•
•
•
•
•

MUST

•
•

RFC 9924 APV February 2026

Lim, et al. Informational Page 24

bit_depth_minus8 be in the range of 2 to 8, inclusive. Other values are reserved for
future use.

capture_time_distance
indicates the time difference between the capture time of the frames in the previous access
unit and frames in the current access unit in milliseconds if there has been any access unit
preceding the access unit this frame belongs to.

reserved_zero_8bits
 be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of

reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 ignore PBU with values of reserved_zero_8bits greater
than 0.

MUST

MUST

MUST

5.3.7. Quantization Matrix

q_matrix[i][x][y]
specifies a scaling value in the quantization matrices. When q_matrix[i][x][y] is not present, it
is inferred to be equal to 16. The array index i specifies an indicator for the color component;
when chroma_format_idc is equal to 2 or 3, the value of the index i is equal to 0 for Y
component, 1 for Cb, and 2 for Cr. The value of 0 for q_matrix[i][x][y] is reserved for future
use.

The quantization matrix, QMatrix[i][x][y], is derived as follows:

QMatrix[i][x][y] = q_matrix[i][x][y]

Figure 14: quantization_matrix() syntax code

syntax code	type
quantization_matrix(){ |
 for(i = 0; i < NumComps; i++){ |
 for(y = 0; y < 8; y++){ |
 for(x = 0; x < 8; x++){ |
 q_matrix[i][x][y] | u(8)
 } |
 } |
 } |
} |

•

5.3.8. Tile Info

RFC 9924 APV February 2026

Lim, et al. Informational Page 25

tile_width_in_mbs
specifies the width of a tile in units of MBs.

tile_height_in_mbs
specifies the height of a tile in units of MBs.

tile_size_present_in_fh_flag
equal to 1 specifies that tile_size_in_fh[i] is present in the frame header.
tile_size_present_in_fh_flag equal to 0 specifies that tile_size_in_fh[i] is not present in the
frame header.

tile_size_in_fh[i]
indicates the size in bytes of i-th tile data in raster order in a frame. The value of
tile_size_in_fh[i] have the same value with tile_size[i]. When it is not present, the value
of tile_size_in_fh[i] is inferred to be equal to tile_size[i]. The value of 0 for tile_size_in_fh[i] is
reserved for future use.

Figure 15: tile_info() syntax code

syntax code	type
tile_info(){ |
 tile_width_in_mbs | u(20)
 tile_height_in_mbs | u(20)
 startMb = 0 |
 for(i = 0; startMb < FrameWidthInMbsY; i++){ |
 ColStarts[i] = startMb * MbWidth |
 startMb += tile_width_in_mbs |
 } |
 ColStarts[i] = FrameWidthInMbsY*MbWidth |
 TileCols = i |
 startMb = 0 |
 for(i = 0; startMb < FrameHeightInMbsY; i++){ |
 RowStarts[i] = startMb * MbHeight |
 startMb += tile_height_in_mbs |
 } |
 RowStarts[i] = FrameHeightInMbsY*MbHeight |
 TileRows = i |
 NumTiles = TileCols * TileRows |
 tile_size_present_in_fh_flag | u(1)
 if(tile_size_present_in_fh_flag){ |
 for(i = 0; i < NumTiles; i++){ |
 tile_size_in_fh[i] | u(32)
 } |
 } |
} |

MUST

5.3.9. Access Unit Information

RFC 9924 APV February 2026

Lim, et al. Informational Page 26

num_frames
indicates the number of frames contained in the current AU.

pbu_type
has the same semantics as pbu_type in the pbu_header() syntax.

Note: The value of pbu_type be 1, 2, 25, 26, or 27 in bitstreams conforming to this
document.

group_id
has the same semantics as group_id in the pbu_header() syntax.

reserved_zero_8bits
 be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of

reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 ignore PBU with values of reserved_zero_8bits greater
than 0.

Figure 16: au_info() syntax code

syntax code	type
au_info(){ |
 num_frames | u(16)
 for(i = 0; i < num_frames; i++){ |
 pbu_type | u(8)
 group_id | u(16)
 reserved_zero_8bits | u(8)
 frame_info() |
 } |
 reserved_zero_8bits | u(8)
 byte_alignment() |
 filler() |
} |

MUST

MUST

MUST

5.3.10. Metadata

RFC 9924 APV February 2026

Lim, et al. Informational Page 27

metadata_size
specifies the size of metadata before filler() in the current PBU.

ff_byte
is a byte equal to 0xFF.

metadata_payload_type
specifies the last byte of the payload type of a metadata.

metadata_payload_size
specifies the last byte of the payload size of a metadata.

Syntax and semantics of metadata_payload() are specified in Section 8.

Figure 17: metadata() syntax code

syntax code	type
metadata(){ |
 metadata_size | u(32)
 currReadSize = 0 |
 do{ |
 payloadType = 0 |
 while(next_bits(8) == 0xFF){ |
 ff_byte | f(8)
 payloadType += ff_byte |
 currReadSize++ |
 } |
 metadata_payload_type | u(8)
 payloadType += metadata_payload_type |
 currReadSize++ |
 |
 payloadSize = 0 |
 while(next_bits(8) == 0xFF){ |
 ff_byte | f(8)
 payloadSize += ff_byte |
 currReadSize++ |
 } |
 metadata_payload_size | u(8)
 payloadSize += metadata_payload_size |
 currReadSize++ |
 |
 metadata_payload(payloadType, payloadSize) |
 currReadSize += payloadSize |
 } while(metadata_size > currReadSize) |
 filler() |
} |

5.3.11. Filler

RFC 9924 APV February 2026

Lim, et al. Informational Page 28

ff_byte
is a byte equal to 0xFF.

Figure 18: filler() syntax code

syntax code	type
filler(){ |
 while(next_bits(8) == 0xFF) |
 ff_byte | f(8)
} |

5.3.12. Tile

tile_dummy_byte
has any pattern of 8-bit string.

Figure 19: tile() syntax code

syntax code	type
tile(tileIdx){ |
 tile_header(tileIdx) |
 for(i = 0; i < NumComps; i++){ |
 tile_data(tileIdx, i) |
 } |
 while(more_data_in_tile()){ |
 tile_dummy_byte | b(8)
 } |
} |

5.3.13. Tile header

RFC 9924 APV February 2026

Lim, et al. Informational Page 29

tile_header_size
indicates the size of the tile header in bytes.

tile_index
specifies the tile index in raster order in a frame. tile_index have the same value as
tileIdx.

tile_data_size[i]
indicates the size of the i-th color component data in a tile in bytes. The array index i specifies
an indicator for the color component; when chroma_format_idc is equal to 2 or 3, the value
of the index i is equal to 0 for Y component, 1 for Cb, and 2 for Cr. The value of 0 for
tile_data_size[i] is reserved for future use.

tile_qp[i]
specifies the quantization parameter value for i-th color component. The array index i
specifies an indicator for the color component; when chroma_format_idc is equal to 2 or 3,
the value of the index i is equal to 0 for Y component, 1 for Cb, and 2 for Cr. The Qp[i] to be
used for the MBs in the tile are derived as follows:

Qp[i] = tile_qp[i] - QpBdOffset
Qp[i] be in the range of -QpBdOffset to 51, inclusive.

reserved_zero_8bits
 be equal to 0 in bitstreams conforming to the profiles specified in Section 9. Values of

reserved_zero_8bits greater than 0 are reserved for future use. Decoders conforming to the
profiles specified in Section 9 ignore PBU with values of reserved_zero_8bits greater
than 0.

Figure 20: tile_header() syntax code

syntax code	type
tile_header(tileIdx){ |
 tile_header_size | u(16)
 tile_index | u(16)
 for(i = 0; i < NumComps; i++){ |
 tile_data_size[i] | u(32)
 } |
 for(i = 0; i < NumComps; i++){ |
 tile_qp[i] | u(8)
 } |
 reserved_zero_8bits | u(8)
 byte_alignment() |
} |

MUST

•
• MUST

MUST

MUST

5.3.14. Tile Data

RFC 9924 APV February 2026

Lim, et al. Informational Page 30

The tile_data() syntax calculates the location of the macroblocks belonging to each tile and
collects them.

Figure 21: tile_data() syntax code

syntax code	type
tile_data(tileIdx, cIdx){ |
 x0 = ColStarts[tileIdx % TileCols] |
 y0 = RowStarts[tileIdx // TileCols] |
 numMbColsInTile = (ColStarts[tileIdx % TileCols + 1] - |
 ColStarts[tileIdx % TileCols]) // MbWidth |
 numMbRowsInTile = (RowStarts[tileIdx // TileCols + 1] - |
 RowStarts[tileIdx // TileCols]) // MbHeight |
 numMbsInTile = numMbColsInTile * numMbRowsInTile |
 PrevDC = 0 |
 PrevDcDiff = 20 |
 Prev1stAcLevel = 0 |
 for(i = 0; i < numMbsInTile; i++){ |
 xMb = x0 + ((i % numMbColsInTile) * MbWidth) |
 yMb = y0 + ((i // numMbColsInTile) * MbHeight) |
 macroblock_layer(xMb, yMb, cIdx) |
 } |
 byte_alignment() |
} |

5.3.15. Macroblock Layer

RFC 9924 APV February 2026

Lim, et al. Informational Page 31

abs_dc_coeff_diff
specifies the absolute value of the difference between the current DC transform coefficient
level and PrevDC.

sign_dc_coeff_diff
specifies the sign of the difference between the current DC transform coefficient level and
PrevDC. sign_dc_coeff_diff equal to 0 specifies that the difference has a positive value.
sign_dc_coeff_diff equal to 1 specifies that the difference has a negative value.

The transform coefficients are represented by the arrays TransCoeff[cIdx][x0][y0]. The array
indices x0, y0 specify the location (x0, y0) relative to the top-left sample for each component of
the frame. The array index cIdx specifies an indicator for the color component; when
chroma_format_idc is equal to 2 or 3, the value of the index i is equal to 0 for Y component, 1 for
Cb, and 2 for Cr. The value of TransCoeff[cIdx][x0][y0] be in the range of -32768 to 32767,
inclusive.

Figure 22: macroblock_layer() syntax code

syntax code	type
macroblock_layer(xMb, yMb, cIdx){ |
 subW = (cIdx == 0)? 1 : SubWidthC |
 subH = (cIdx == 0)? 1 : SubHeightC |
 blkWidth = (cIdx == 0)? MbWidth : MbWidthC |
 blkHeight = (cIdx == 0)? MbHeight : MbHeightC |
 TrSize = 8 |
 for(y = 0; y < blkHeight; y += TrSize){ |
 for(x = 0; x < blkWidth; x += TrSize){ |
 abs_dc_coeff_diff | h(v)
 if(abs_dc_coeff_diff) |
 sign_dc_coeff_diff | u(1)
 TransCoeff[cIdx][xMb // subW + x][yMb // subH + y] = |
 PrevDC + abs_dc_coeff_diff * |
 (1 - 2*sign_dc_coeff_diff) |
 PrevDC = |
 TransCoeff[cIdx][xMb // subW + x][yMb // subH + y] |
 PrevDcDiff = abs_dc_coeff_diff |
 ac_coeff_coding(xMb // subW + x, yMb // subH + y, |
 log2(TrSize), log2(TrSize), cIdx) |
 } |
 } |
} |

MUST

5.3.16. AC Coefficient Coding

RFC 9924 APV February 2026

Lim, et al. Informational Page 32

coeff_zero_run
specifies the number of zero-valued transform coefficient levels that are located before the
position of the next non-zero transform coefficient level in a scan of transform coefficient
levels.

abs_ac_coeff_minus1
plus 1 specifies the absolute value of an AC transform coefficient level at the given scanning
position.

Figure 23: ac_coeff_coding() syntax code

syntax code	type
ac_coeff_coding(x0, y0, log2BlkWidth, log2BlkHeight, cIdx){ |
 scanPos = 1 |
 firstAC = 1 |
 PrevLevel = Prev1stAcLevel |
 PrevRun = 0 |
 do{ |
 coeff_zero_run | h(v)
 for(i = 0; i < coeff_zero_run; i++){ |
 blkPos = ScanOrder[scanPos] |
 xC = blkPos & ((1 << log2BlkWidth) - 1) |
 yC = blkPos >> log2BlkWidth |
 TransCoeff[cIdx][x0+xC][y0 + yC] = 0 |
 scanPos++ |
 } |
 PrevRun = coeff_zero_run |
 if(scanPos < (1 << (log2BlkWidth + log2BlkHeight))){ |
 abs_ac_coeff_minus1 | h(v)
 sign_ac_coeff | u(1)
 level = (abs_ac_coeff_minus1 + 1) * |
 (1 - 2 * sign_ac_coeff) |
 blkPos = ScanOrder[scanPos] |
 xC = blkPos & ((1 << log2BlkWidth) - 1) |
 yC = blkPos >> log2BlkWidth |
 TransCoeff[cIdx][x0 + xC][y0 + yC] = level |
 scanPos++ |
 PrevLevel = abs_ac_coeff_minus1 + 1 |
 if(firstAC == 1){ |
 firstAC = 0 |
 Prev1stAcLevel = PrevLevel |
 } |
 } |
 } while(scanPos < (1 << (log2BlkWidth + log2BlkHeight))) |
} |

RFC 9924 APV February 2026

Lim, et al. Informational Page 33

sign_ac_coeff
specifies the sign of an AC transform coefficient level for the given scanning position.
sign_ac_coeff equal to 0 specifies that the corresponding AC transform coefficient level has a
positive value. sign_ac_coeff equal to 1 specifies that the corresponding AC transform
coefficient level has a negative value.

The array ScanOrder[sPos] specifies the mapping of the zig-zag scan position sPos, ranging from
0 to (1 << log2BlkWidth) * (1 << log2BlkHeight) - 1, inclusive, to a raster scan position rPos.
ScanOrder is derived by invoking Section 4.4.1 with input parameters blkWidth equal to (1 <<
log2BlkWidth) and blkHeight equal to (1 << log2BlkHeight).

5.3.17. Byte Alignment

alignment_bit_equal_to_zero
 be equal to 0.

Figure 24: byte_alignment() syntax code

syntax code	type
byte_alignment(){ |
 while(!byte_aligned()) |
 alignment_bit_equal_to_zero | f(1)
} |

MUST

6. Decoding Process
This process is invoked to obtain a decoded frame from a bitstream. Input to this process is a
bitstream of a coded frame. Output of this process is a decoded frame.

The decoding process operates as follows for the current frame:

The syntax structure for a coded frame is parsed to obtain the parsed syntax structures.
The processes in Sections 6.1, 6.2, and 6.3 specify the decoding processes using syntax
elements in all syntax structures. For bitstreams conforming to this document, the coded
tiles of the frame contain tile data for every MB of the frame, such that the division of
the frame into tiles and the division of the tiles into MBs form a partitioning of the frame.
After all the tiles in the current frame have been decoded, the decoded frame is cropped
using the cropping rectangle if FrameWidthInSamplesY is not equal to FrameWidthInMbY *
MbWidth or FrameHeightInSamplesY is not equal to FrameHeightInMbsY * MbHeight.
The cropping rectangle, which specifies the samples of a frame that are output, is derived as
follows:

The cropping rectangle contains the luma samples with horizontal frame coordinates
from 0 to FrameWidthInSampleY - 1 and vertical frame coordinates from 0 to
FrameHeightInSamplesY - 1, inclusive.

•
•

MUST

•

•

◦

RFC 9924 APV February 2026

Lim, et al. Informational Page 34

The cropping rectangle contains the two chroma arrays having frame coordinates (x//
SubWidthC, y//SubHeightC), where (x,y) are the frame coordinates of the specified luma
samples.

◦

6.1. MB Decoding Process
This process is invoked for each MB.

Input to this process is a luma location (xMb, yMb) specifying the top-left sample of the current
luma MB relative to the top-left luma sample of the current frame. Outputs of this process are
the reconstructed samples of all color components. The total number of color components is
indicated by the value of NumComps for the current MB. For example, when chroma_format_idc
is equal to 2 or 3, the value of NumComps is equal to 3 and three components, Y component, Cb
component, and Cr component, are reconstructed

The following steps apply:

Let recSamples[0] be a (MbWidth)x(MbHeight) array of the reconstructed samples of the
first color component (when chroma_format_idc is equal to 2 or 3, Y).
The block reconstruction process as specified in Section 6.2 is invoked with the luma
location (xMb, yMb), the variable nBlkW set equal to MbWidth, the variable nBlkH set equal
to MbHeight, the variable cIdx set equal to 0, and the (MbWidth)x(MbHeight) array
recSamples[0] as inputs. The output is a modified version of the (MbWidth)x(MbHeight)
array recSamples[0], which is the reconstructed samples of the first color component for the
current MB.
When chroma_format_idc is not equal to 0, let recSamples[1] be a (MbWidthC)x(MbHeightC)
array of the reconstructed samples of the second color component. For example, when
chroma_format_idc is equal to 2 or 3, recSamples[1] is the Cb color component.
When chroma_format_idc is not equal to 0, the block reconstruction process as specified in
Section 6.2 is invoked with the luma location (xMb, yMb), the variable nBlkW set equal to
MbWidthC, the variable nBlkH set equal to MbHeightC, the variable cIdx set equal to 1, and
the (MbWidthC)x(MbHeightC) array recSamples[1] as inputs. The output is a modified
version of the (MbWidthC)x(MbHeightC) array recSamples[1], which is the reconstructed
samples of the second color component for the current MB.
When chroma_format_idc is not equal to 0, let recSamples[2] be a (MbWidthC)x(MbHeightC)
array of the reconstructed samples of the third color component. For example, when
chroma_format_idc is equal to 2 or 3, recSamples[2] is the Cr color component.
When chroma_format_idc is not equal to 0, the block reconstruction process as specified in
Section 6.2 is invoked with the luma location (xMb, yMb), the variable nBlkW set equal to
MbWidthC, the variable nBlkH set equal to MbHeightC, the variable cIdx set equal to 2, and
the (MbWidthC)x(MbHeightC) array recSamples[2] as inputs. The output is a modified
version of the (MbWidthC)x(MbHeightC) array recSamples[2], which is the reconstructed
samples of the third color component for the current MB.
When chroma_format_idc is equal to 4, let recSamples[3] be a (MbWidthC)x(MbHeightC)
array of the reconstructed samples of the fourth color component.

•

•

•

•

•

•

•

RFC 9924 APV February 2026

Lim, et al. Informational Page 35

When chroma_format_idc is equal to 4, the block reconstruction process as specified in
Section 6.2 is invoked with the luma location (xMb, yMb), the variable nBlkW set equal to
MbWidthC, the variable nBlkH set equal to MbHeightC, the variable cIdx set equal to 3, and
the (MbWidthC)x(MbHeightC) array recSamples[3] as inputs. The output is a modified
version of the (MbWidthC)x(MbHeightC) array recSamples[3], which is the reconstructed
samples of the fourth color component for the current MB.

•

6.2. Block Reconstruction Process
Inputs to this process are:

a luma location (xMb, yMb) specifying the top-left sample of the current MB relative to the
top-left luma sample of the current frame,
two variables nBlkW and nBlkH specifying the width and the height of the current block,
a variable cIdx specifying the color component of the current block, and
an (nBlkW)x(nBlkH) array of recSamples of a reconstructed block.

Output of this process is a modified version of the (nBlkW)x(nBlkH) array recSamples of
reconstructed samples.

The following applies:

The variables numBlkX and numBlkY are derived as follows:

numBlkX = nBlkW // TrSize
numBlkY = nBlkH // TrSize

For yIdx = 0..numBlkY - 1, the following applies:

For xIdx = 0..numBlkX - 1, the following applies:

The variables xBlk and yBlk are derived as follows:

xBlk = xMb // (cIdx==0? 1: SubWidthC) + xIdx*TrSize
yBlk = yMb // (cIdx==0? 1: SubHeightC) + yIdx*TrSize

The scaling and transformation process as specified in Section 6.3 is invoked with the
location (xBlk, yBlk), the variable cIdx set equal to cIdx, the transform width nBlkW set
equal to TrSize, and the transform height nBlkH set equal to TrSize as inputs. The output
is a (TrSize)x(TrSize) array r of a reconstructed block.
The (TrSize)x(TrSize) array recSamples is modified as follows:

recSamples[(xIdx * TrSize) + i, (yIdx * TrSize) + j] = r[i,j], with i=0..TrSize-1, j=0..TrSize-1

•

•
•
•

•

◦
◦

•

◦
▪

▪
▪

▪

▪
▪

6.3. Scaling and Transformation Process
Inputs to this process are:

a location (xBlkY, yBlkY) of the current color component specifying the top-left sample of the
current block relative to the top-left sample of the current frame,

•

RFC 9924 APV February 2026

Lim, et al. Informational Page 36

a variable cIdx specifying the color component of the current block,
a variable nBlkW specifying the width of the current block, and
a variable nBlkH specifying the height of the current block.

Output of this process is the (nBlkW)x(nBlkH) array of reconstructed samples r with elements
r[x][y].

The quantization parameter qP is derived as follows:

qP = Qp[cIdx] + QpBdOffset

The (nBlKW)x(nBlkH) array of reconstructed samples r is derived as follows:

The scaling process for transform coefficients as specified in Section 6.3.1 is invoked with
the block location (xBlkY, yBlkY), the block width nBlkW and the block height nBlkH, the
color component variable cIdx, and the quantization parameter qP as inputs. The output is
an (nBlkW)x(nBlkH) array of scaled transform coefficients d.
The transformation process for scaled transform coefficients as specified in Section 6.3.2 is
invoked with the block location (xBlkY, yBlkY), the block width nBlkW and the block height
nBlkH, the color component variable cIdx, and the (nBlkW)x(nBlkH) array of scaled
transform coefficients d as inputs. The output is an (nBlkW)x(nBlkH) array of reconstructed
samples r.
The variable bdShift is derived as follows:

bdShift = 20 - BitDepth

The reconstructed sample values r[x][y] with x = 0..nBlkW - 1, y = 0..nBlkH - 1 are modified
as follows:

r[x][y] = clip(0, (1 << BitDepth)-1, ((r[x][y]+(1 << (bdShift-1)))>>bdShift) + (1 << (BitDepth-1)))

•
•
•

•

•

•

•

◦

•

◦

6.3.1. Scaling Process for Transform Coefficients

Inputs to this process are:

a location (xBlkY, yBlkY) of the current color component specifying the top-left sample of the
current block relative to the top-left sample of the current frame,
a variable nBlkW specifying the width of the current block,
a variable nBlkH specifying the height of the current block,
a variable cIdx specifying the color component of the current block, and
a variable qP specifying the quantization parameter.

Output of this process is the (nBlkW)x(nBlkH) array d of scaled transform coefficients with
elements d[x][y].

The variable bdShift is derived as follows:

bdShift = BitDepth + ((log2(nBlkW) + log2(nBlkH)) // 2) - 5

•

•
•
•
•

•

RFC 9924 APV February 2026

Lim, et al. Informational Page 37

The list levelScale[] is specified as follows:

levelScale[k] = {40, 45, 51, 57, 64, 71} with k = 0..5.

For the derivation of the scaled transform coefficients d[x][y] with x = 0..nBlkW - 1, y = 0..nBlkH -
1, the following applies:

The scaled transform coefficient d[x][y] is derived as follows:

d[x][y] = clip(-32768, 32767, ((TransCoeff[cIdx][xBlkY][yBlkY] * QMatrix[cIdx][x][y] *
levelScale[qP % 6] << (qP//6)) + (1 << (bdShift-1)) >> bdShift))

•

•

◦

6.3.2. Process for Scaled Transform Coefficients

6.3.2.1. General
Inputs to this process are:

a location (xBlkY, yBlkY) of the current color component specifying the top-left sample of the
current block relative to the top-left sample of the current frame,
a variable nBlkW specifying the width of the current block,
a variable nBlkH specifying the height of the current block, and
an (nBlkW)x(nBlkH) array d of scaled transform coefficients with elements d[x][y].

Output of this process is the (nBlkW)x(nBlkH) array r of reconstructed samples with elements
r[x][y].

The (nBlkW)x(nBlkH) array r of reconstructed samples is derived as follows:

Each (vertical) column of scaled transform coefficients d[x][y] with x = 0..nBlkW - 1, y =
0..nBlkH - 1 is transformed to e[x][y] with x = 0..nBlkW - 1, y = 0..nBlkH - 1 by invoking the
one-dimensional transformation process as specified in Section 6.3.2.2 for each column x =
0..nBlkW - 1 with the size of the transform block nBlkH, and the list d[x][y] with y = 0..nBlkH
- 1 as inputs. The output is the list e[x][y] with y = 0..nBlkH - 1.
The following applies:

g[x][y] = (e[x][y] + 64) >> 7

Each (horizontal) row of the resulting array g[x][y] with x = 0..nBlkW - 1, y = 0..nBlkH - 1 is
transformed to r[x][y] with x = 0..nBlkW - 1, y = 0..nBlkH - 1 by invoking the one-dimensional
transformation process as specified in Section 6.3.2.2 for each row y = 0..nBlkH - 1 with the
size of the transform block nBlkW, and the list g[x][y] with x = 0..nBlkW - 1 as inputs. The
output is the list r[x][y] with x = 0..nBlkW - 1.

•

•
•
•

•

•

◦

•

6.3.2.2. Transformation Process
Inputs to this process are:

a variable nTbS specifying the sample size of scaled transform coefficients, and
a list of scaled transform coefficients x with elements x[j], with j = 0..(nTbS - 1).

•
•

RFC 9924 APV February 2026

Lim, et al. Informational Page 38

Output of this process is the list of transformed samples y with elements y[i], with i = 0..(nTbS - 1).

The transformation matrix derivation process as specified in Section 6.3.2.3 is invoked with the
transform size nTbS as input, and the transformation matrix transMatrix as output.

The list of transformed samples y[i] with i = 0..(nTbS - 1) is derived as follows:

y[i] = sum(j = 0, nTbS - 1, transMatrix[i][j] * x[j])•

6.3.2.3. Transformation Matrix Derivation Process
Input to this process is a variable nTbS specifying the horizontal sample size of scaled transform
coefficients.

Output of this process is the transformation matrix transMatrix.

The transformation matrix transMatrix is derived based on nTbs as follows:

If nTbS is equal to 8, the following applies:•

Figure 25: Transform matrix for nTbS == 8

transMatrix[m][n] =
 {
 { 64, 64, 64, 64, 64, 64, 64, 64 }
 { 89, 75, 50, 18, -18, -50, -75, -89 }
 { 84, 35, -35, -84, -84, -35, 35, 84 }
 { 75, -18, -89, -50, 50, 89, 18, -75 }
 { 64, -64, -64, 64, 64, -64, -64, 64 }
 { 50, -89, 18, 75, -75, -18, 89, -50 }
 { 35, -84, 84, -35, -35, 84, -84, 35 }
 { 18, -50, 75, -89, 89, -75, 50, -18 }
 }

7. Parsing Process

7.1. Process for Syntax Element Type h(v)
This process is invoked for the parsing of syntax elements with descriptor h(v) in Section 5.3.15
and Section 5.3.16.

7.1.1. Process for abs_dc_coeff_diff

Inputs to this process are bits for the abs_dc_coeff_diff syntax element. Output of this process is a
value of the abs_dc_coeff_diff syntax element. The variable kParam is derived as follows:

kParam = clip(0, 5, PrevDcDiff >> 1)

RFC 9924 APV February 2026

Lim, et al. Informational Page 39

The value of syntax element abs_dc_coeff_diff is obtained by invoking the parsing process for
variable-length codes as specified in Section 7.1.4 with kParam.

7.1.2. Process for coeff_zero_run

Inputs to this process are bits for the coeff_zero_run syntax element.

Output of this process is a value of the coeff_zero_run syntax element.

The variable kParam is derived as follows:

kParam = clip(0, 2, PrevRun >> 2)

The value of syntax element coeff_zero_run is obtained by invoking the parsing process for
variable-length codes as specified in Section 7.1.4 with kParam.

7.1.3. Process for abs_ac_coeff_minus1

Inputs to this process are bits for the abs_ac_coeff_minus1 syntax element.

Output of this process is a value of the abs_ac_coeff_minus1 syntax element.

The variable kParam is derived as follows:

kParam = clip(0, 4, PrevLevel >> 2)

The value of syntax element abs_ac_coeff_minus1 is obtained by invoking the parsing process
for variable-length codes as specified in Section 7.1.4 with kParam.

7.1.4. Process for Variable-Length Codes

Input to this process is kParam.

Output of this process is a value, symbolValue, of a syntax element.

The symbolValue is derived as follows:

RFC 9924 APV February 2026

Lim, et al. Informational Page 40

where the value returned from read_bits(n) is interpreted as a binary representation of an n-bit
unsigned integer with the most significant bit written first.

Figure 26: Parsing process of symbolValue

symbolValue = 0
parseExpGolomb = 1
k = kParam
stopLoop = 0

if(read_bits(1) == 1){
 parseExpGolomb = 0
}
else{
 if(read_bits (1) == 0){
 symbolValue += (1 << k)
 parseExpGolomb = 0
 }
 else{
 symbolValue += (2 << k)
 parseExpGolomb = 1
 }
}

if(parseExpGolomb){
 do{
 if(read_bits(1) == 1){
 stopLoop = 1
 }
 else{
 symbolValue += (1 << k)
 k++
 }
 } while(!stopLoop)
}

if(k > 0)
 symbolValue += read_bits(k)

7.2. Codeword Generation Process for h(v) (Informative)
This process specifies the code generation process for syntax elements with descriptor h(v).

7.2.1. Process for abs_dc_coeff_diff

Input to this process is a symbol value of the abs_dc_coeff_diff syntax element.

Output of this process is a codeword of the abs_dc_coeff_diff syntax element.

The variable kParam is derived as follows:

kParam = clip(0, 5, PrevDcDiff >> 1)

RFC 9924 APV February 2026

Lim, et al. Informational Page 41

The codeword of syntax element abs_dc_coeff_diff is obtained by invoking the generation
process for variable-length codes as specified in Section 7.2.4 with the symbol value symbolValue
and kParam.

7.2.2. Process for coeff_zero_run

Input to this process is a symbol value of the coeff_zero_run syntax element.

Output of this process is a codeword of the coeff_zero_run syntax element.

The variable kParam is derived as follows:

kParam = clip(0, 2, PrevRun >> 2)

The codeword of syntax element coeff_zero_run is obtained by invoking the generation process
for variable-length codes as specified in Section 7.2.4 with the symbol value symbolValue and
kParam.

7.2.3. Process for abs_ac_coeff_minus1

Input to this process is a symbol value of the abs_ac_coeff_minus1 syntax element.

Output of this process is a codeword of the abs_ac_coeff_minus1 syntax element.

The variable kParam is derived as follows:

kParam = clip(0, 4, PrevLevel >> 2)

The codeword of syntax element abs_ac_coeff_minus1 is obtained by invoking the generation for
variable-length codes as specified in Section 7.2.4 with the symbol value symbolValue and
kParam.

7.2.4. Process for Variable-Length Codes

Inputs to this process are symbolVal and kParam

Output of this process is a codeword of a syntax element.

The codeword is derived as follows:

RFC 9924 APV February 2026

Lim, et al. Informational Page 42

where a codeword generated from put_bits(v, n) is interpreted as a binary representation of an
n-bit unsigned integer value v with the most significant bit written first.

Figure 27: Generating bits from symbolValue

PrefixVLCTable[3][2] = {{1, 0}, {0, 0}, {0, 1}}

symbolValue = symbolVal
valPrefixVLC = clip(0, 2, symbolVal >> kParam)
bitCount = 0
k = kParam

while(symbolValue >= (1 << k)){
 symbolValue -= (1 << k)
 if(bitCount < 2)
 put_bits(PrefixVLCTable[valPrefixVLC][bitCount], 1)
 else
 put_bits(0, 1)
 if(bitCount >= 2)
 k++
 bitCount++
}

if(bitCount < 2)
 put_bits(PrefixVLCTable[valPrefixVLC][bitCount], 1)
else
 put_bits(1, 1)

if(k > 0)
 put_bits(symbolValue, k)

8. Metadata Information

8.1. Metadata Payload

RFC 9924 APV February 2026

Lim, et al. Informational Page 43

The syntax and semantics of each type of metadata are defined in Section 8.2.

Figure 28: metadata_payload() syntax code

syntax code	type
metadata_payload(payloadType, payloadSize){ |
 if(payloadType == 4){ |
 metadata_itu_t_t35(payloadSize) |
 } |
 else if(payloadType == 5){ |
 metadata_mdcv(payloadSize) |
 } |
 else if(payloadType == 6){ |
 metadata_cll(payloadSize) |
 } |
 else if(payloadType == 10){ |
 metadata_filler(payloadSize) |
 } |
 else if(payloadType == 170){ |
 metadata_user_defined(payloadSize) |
 } |
 else{ |
 metadata_undefined(payloadSize) |
 } |
 byte_alignment() |
} |

8.2. List of Metadata Syntax and Semantics

8.2.1. Filler Metadata

ff_byte
is a byte equal to 0xFF.

syntax code	type
metadata_filler(payloadSize){ |
 for(i = 0; i < payloadSize; i++){ |
 ff_byte | f(8)
 } |
} |

8.2.2. Recommendation ITU-T T.35 Metadata

This metadata contains information registered as specified in .[ITUT-T35]

RFC 9924 APV February 2026

Lim, et al. Informational Page 44

itu_t_t35_country_code
 be a byte having the semantics of country code as specified in Annex A of .

itu_t_t35_country_code_extension
 be a byte having the semantics of country code as specified in Annex B of .

itu_t_t35_payload[i]
 be a byte having the semantics of data registered as specified in .

The terminal provider code and terminal provider oriented code as specified in
be contained in the first one or more bytes of the itu_t_t35_payload. Any remaining bytes in
itu_t_t35_payload data be data having syntax and semantics as specified by the entity
identified by the country code and terminal provider code. Note that any metadata to
be carried with this type of payload is expected to have been registered through either national
administrator, the Alliance for Telecommuncations Industry Solutions (ATIS) or the ITUT-T
Telecommnunication Standardization Bureau (TSB) as specified in .

Figure 29: metadata_itu_t_t35() syntax code

syntax code	type
metadata_itu_t_t35(payloadSize){ |
 itu_t_t35_country_code | b(8)
 readSize = payloadSize - 1 |
 |
 if(itu_t_t35_country_code == 0xFF){ |
 itu_t_t35_country_code_extension | b(8)
 readSize-- |
 } |
 |
 for(i = 0; i < readSize; i++){ |
 itu_t_t35_payload[i] | b(8)
 } |
} |

MUST [ITUT-T35]

MUST [ITUT-T35]

MUST [ITUT-T35]

[ITUT-T35] MUST

MUST
[ITUT-T35]

[ITUT-T35]

8.2.3. Mastering Display Color Volume Metadata

RFC 9924 APV February 2026

Lim, et al. Informational Page 45

primary_chromaticity_x[i]
specifies a 0.16 fixed-point format of X chromaticity coordinate of mastering display in terms
of CIE 1931 as specified in , where i = 0, 1, 2 specifies Red, Green, Blue,
respectively.

primary_chromaticity_y[i]
specifies a 0.16 fixed-point format of Y chromaticity coordinate of mastering display in terms
of CIE 1931 as specified in , where i = 0, 1, 2 specifies Red, Green, Blue,
respectively.

white_point_chromaticity_x
specifies a 0.16 fixed-point format of white point X chromaticity coordinate of mastering
display in terms of CIE 1931 as specified in .

white_point_chromaticity_y
specifies a 0.16 fixed-point format of white point Y chromaticity coordinate as mastering
display in terms of CIE 1931 as specified in .

max_mastering_luminance
is a 24.8 fixed-point format of maximum display mastering luminance, represented in
candelas per square meter.

min_mastering_luminance
is an 18.14 fixed-point format of minimum display mastering luminance, represented in
candelas per square meter.

Figure 30: metadata_mdcv() syntax code

syntax code	type
metadata_mdcv(payloadSize){ |
 for(i = 0; i < 3; i++){ |
 primary_chromaticity_x[i] | u(16)
 primary_chromaticity_y[i] | u(16)
 } |
 white_point_chromaticity_x | u(16)
 white_point_chromaticity_y | u(16)
 max_mastering_luminance | u(32)
 min_mastering_luminance | u(32)
} |

[ISO11664-1]

[ISO11664-1]

[ISO11664-1]

[ISO11664-1]

8.2.4. Content Light-Level Information Metadata

RFC 9924 APV February 2026

Lim, et al. Informational Page 46

max_cll
specifies the maximum content light level information as specified in , Appendix
A.

max_fall
specifies the maximum frame-average light level information as specified in ,
Appendix A.

Figure 31: metadata_cll() syntax code

syntax code	type
metadata_cll(payloadSize){ |
 max_cll | u(16)
 max_fall | u(16)
} |

[CTA-861.3]

[CTA-861.3]

8.2.5. User-Defined Metadata

This metadata has user data identified by a universal unique identifier as specified in ,
the contents of which are not specified in this document.

uuid
 be a 128-bit value specified as a generated Universally Unique Identifier (UUID)

according to the procedures specified in .

user_defined_data_payload[i]
 be a byte having user-defined syntax and semantics as specified by the UUID generator.

[RFC9562]

Figure 32: metadata_user_defined() syntax code

syntax code	type
metadata_user_defined(payloadSize){ |
 uuid | u(128)
 for(i = 0; i < (payloadSize - 16); i++) |
 user_defined_data_payload[i] | b(8)
} |

MUST
[RFC9562]

MUST

8.2.6. Undefined Metadata

RFC 9924 APV February 2026

Lim, et al. Informational Page 47

undefined_metadata_payload_byte[i]
is a byte reserved for future use.

Figure 33: metadata_undefined() syntax code

syntax code	type
metadata_undefined(payloadSize){ |
 for(i = 0; i < payloadSize; i++){ |
 undefined_metadata_payload_byte[i] | b(8)
 } |
} |

9. Profiles, Levels, and Bands

9.1. Overview of Profiles, Levels, and Bands
Profiles, levels, and bands specify restrictions on a coded frame and hence limits on the
capabilities needed to decode the coded frame. Profiles, levels, and bands are also used to
indicate interoperability points between individual decoder implementations.

Each profile specifies a subset of algorithmic features and limits that be supported by all
decoders conforming to that profile.

NOTE: This document does not include individually selectable "options" at the decoder, as
this would increase interoperability difficulties.

NOTE: Encoders are not required to make use of any particular subset of features supported
in a profile.

Each level with a band specifies a set of limits on the values that may be taken by the syntax
elements of this document. For any given profile, a level with a band generally corresponds to a
particular decoder processing load and memory capability. The constraints set by levels and
bands are orthogonal to the constraints defined by profiles so that the same set of level and band
definitions is used with all profiles. For example, a certain level L and a certain band B can be
combined with either profile X or profile Y to specifically define two different sets of constraints.

NOTE: Individual implementations may support a different level for each supported profile.

MUST

9.2. Requirements on Video Decoder Capability
Capabilities of video decoders conforming to this document are specified in terms of the ability
to decode video streams conforming to the constraints of profiles, levels, and bands specified in
this section. When expressing the capabilities of a decoder for a specified profile, the level and
the band supported for that profile also be expressed.MUST

RFC 9924 APV February 2026

Lim, et al. Informational Page 48

Specific values are specified for the syntax elements profile_idc, level_idc, and band_idc. All
other values of profile_idc, level_idc, and band_idc are reserved for future use.

NOTE: Decoders infer that a reserved value of profile_idc between the values
specified in this document indicates intermediate capabilities between the specified profiles,
as there are no restrictions on the method to be chosen for the use of such future reserved
values. However, decoders infer that a reserved value of level_idc and a reserved value
of band_idc between the values specified in this document indicates intermediate capabilities
between the specified levels.

SHALL NOT

MUST

9.3. Profiles

9.3.1. General

All constraints for a coded frame that are specified are constraints for the coded frame that are
activated when the bitstream of the access unit is decoded.

9.3.2. 422-10 Profile

Conformance of a coded frame to the 422-10 profile is indicated by profile_idc equal to 33.

Coded frames conforming to the 422-10 profile obey the following constraints:

chroma_format_idc be equal to 2.
bit_depth_minus8 be equal to 2.
pbu_type be equal to 1.

Coded frames conforming to the 422-10 profile also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 422-10 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B)
be capable of decoding all coded frames for which all of the following conditions apply:

The coded frame is indicated to conform to the 422-10 profile.
The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.
The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

MUST

• MUST

• MUST

• MUST

MUST

MUST

•
•

•

9.3.3. 422-12 Profile

Conformance of a coded frame to the 422-12 profile is indicated by profile_idc equal to 44.

Coded frames conforming to the 422-12 profile obey the following constraints:

chroma_format_idc be equal to 2.
bit_depth_minus8 be in the range of 2 to 4.
pbu_type be equal to 1.

MUST

• MUST

• MUST

• MUST

RFC 9924 APV February 2026

Lim, et al. Informational Page 49

Coded frames conforming to the 422-12 profile also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 422-12 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B)
be capable of decoding all coded frames for which all of the following conditions apply:

The coded frame is indicated to conform to the 422-12 profile or the 422-10 profile.
The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.
The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

MUST

MUST

•
•

•

9.3.4. 444-10 Profile

Conformance of a coded frame to the 444-10 profile is indicated by profile_idc equal to 55.

Coded frames conforming to the 444-10 profile obey the following constraints:

chroma_format_idc be in the range of 2 to 3.
bit_depth_minus8 be equal to 2.
pbu_type be equal to 1.

Coded frames conforming to the 444-10 profile also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 444-10 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B)
be capable of decoding all coded frames for which all of the following conditions apply:

The coded frame is indicated to conform to the 444-10 profile or the 422-10 profile.
The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.
The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

MUST

• MUST

• MUST

• MUST

MUST

MUST

•
•

•

9.3.5. 444-12 Profile

Conformance of a coded frame to the 444-12 profile is indicated by profile_idc equal to 66.

Coded frames conforming to the 444-12 profile obey the following constraints:

chroma_format_idc be in the range of 2 to 3.
bit_depth_minus8 be in the range of 2 to 4.
pbu_type be equal to 1.

MUST

• MUST

• MUST

• MUST

RFC 9924 APV February 2026

Lim, et al. Informational Page 50

Coded frames conforming to the 444-12 profile also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 444-12 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B)
be capable of decoding all coded frames for which all of the following conditions apply:

The coded frame is indicated to conform to the 444-12 profile, the 444-10 profile, the 422-12
profile, or the 422-10 profile.
The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.
The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

MUST

MUST

•

•

•

9.3.6. 4444-10 Profile

Conformance of a coded frame to the 4444-10 profile is indicated by profile_idc equal to 77.

Coded frames conforming to the 4444-10 profile obey the following constraints:

chroma_format_idc be in the range of 2 to 4.
bit_depth_minus8 be equal to 2.
pbu_type be equal to 1.

Coded frames conforming to the 4444-10 profile also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 4444-10 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B)
be capable of decoding all coded frames for which all of the following conditions apply:

The coded frame is indicated to conform to the 4444-10 profile, the 444-10 profile, or the
422-10 profile.
The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.
The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

MUST

• MUST

• MUST

• MUST

MUST

MUST

•

•

•

9.3.7. 4444-12 Profile

Conformance of a coded frame to the 4444-12 profile is indicated by profile_idc equal to 88.

Coded frames conforming to the 4444-12 profile obey the following constraints:

chroma_format_idc be in the range of 2 to 4.
bit_depth_minus8 be in the range of 2 to 4.
pbu_type be equal to 1.

MUST

• MUST

• MUST

• MUST

RFC 9924 APV February 2026

Lim, et al. Informational Page 51

Coded frames conforming to the 4444-12 profile also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 4444-12 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B)
be capable of decoding all coded frames for which all of the following conditions apply:

The coded frame is indicated to conform to the 4444-12 profile, the 4444-10 profile, the
444-12 profile, the 444-10 profile, the 422-12 profile, or the 422-10 profile.
The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.
The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

MUST

MUST

•

•

•

9.3.8. 400-10 Profile

Conformance of a coded frame to the 400-10 profile is indicated by profile_idc equal to 99.

Coded frames conforming to the 400-10 profile obey the following constraints:

chroma_format_idc be equal to 0.
bit_depth_minus8 be equal to 2.
pbu_type be equal to 1.

Coded frames conforming to the 400-10 profile also conform to any levels and bands
constraints specified in Section 9.4. Decoders conforming to the 400-10 profile at a specific level
(identified by a specific value of L) and a specific band (identified by a specific value of B)
be capable of decoding all coded frames for which all of the following conditions apply:

The coded frame is indicated to conform to the 400-10 profile.
The coded frame is indicated to conform to a level (by a specific value of level_idc) that is
lower than or equal to level L.
The coded frame is indicated to conform to a band (by a specific value of band_idc) that is
lower than or equal to band B.

MUST

• MUST

• MUST

• MUST

MUST

MUST

•
•

•

9.4. Levels and Bands

9.4.1. General

For purposes of comparison of level capabilities, a particular level of each band is considered to
be a lower level than some other level when the value of the level_idc of the particular level of
each band is less than that of the other level.

The luma sample rate (luma samples per second) be less than or equal to the "Max
luma sample rate".
The coded data rate (bits per second) be less than or equal to the "Max luma sample
rate".
The value of tile_width_in_mbs be greater than or equal to 16.
The value of tile_height_in_mbs be greater than or equal to 8.

• MUST

• MUST

• MUST

• MUST

RFC 9924 APV February 2026

Lim, et al. Informational Page 52

The value of TileCols be less than or equal to 20.
The value of TileRows be less than or equal to 20.

• MUST

• MUST

9.4.2. Limits of Levels and Bands

Table 4 specifies the limits for each level of each band. A level to which a coded frame conforms
is indicated by the syntax elements level_idc and band_idc as follows:

level_idc be set equal to a value of 30 times the level number specified in Table 4.

Table 5 shows widely used typical configurations of resolution and frame rates of video and
corresponding levels for them.

• MUST

level Max luma sample rate (sample/sec) Max coded data rate (Mbits/sec)

band_idc==

0 1 2 3

1 3,041,280 8 11 15 23

1.1 6,082,560 16 21 30 45

2 15,667,200 39 54 76 114

2.1 31,334,400 78 108 152 227

3 66,846,720 114 159 222 333

3.1 133,693,440 227 317 444 666

4 265,420,800 455 637 892 1,338

4.1 530,841,600 910 1,274 1,784 2,675

5 1,061,683,200 1,820 2,548 3,567 5,350

5.1 2,123,366,400 3,639 5,095 7,133 10,699

6 4,777,574,400 7,278 10,189 14,265 21,397

6.1 8,493,465,600 14,556 20,378 28,529 42,793

7 16,986,931,200 29,111 40,756 57,058 85,586

7.1 33,973,862,400 58,222 81,511 114,115 171,172

Table 4: General level limits

RFC 9924 APV February 2026

Lim, et al. Informational Page 53

use case resolution frame per second luma sample per second level

720p 1280 x 720 30 27,648,000 2.1

FHD 1920 x 1080 30 62,208,000 3

UHD 4K 3840 x 2160 60 497,664,000 4.1

UHD 4K 3840 x 2160 120 995,328,000 5

UHD 8K 7680 x 4320 60 1,990,656,000 5.1

UHD 8K 7680 x 4320 120 3,981,312,000 6

Table 5: Example of typical video configurations and corresponding levels (informative)

10. Security Considerations
Like any other audio or video codec, APV should not be used with insecure ciphers or cipher
modes that are vulnerable to known plaintext attacks. Some of the header bits as well as the
padding are easily predictable.

A decoder be robust against any non-compliant or malicious payloads. Malicious payloads
 cause the decoder to overrun its allocated memory or to take an excessive amount of

resources to decode. An overrun in allocated memory could lead to arbitrary code execution by
an attacker. The same applies to the encoder, even though problems in encoders are typically
rare. Malicious video streams cause the encoder to misbehave because this would
allow an attacker to attack transcoding gateways. A frequent security problem in image and
video codecs is failure to check for integer overflows. An example is allocating "frame_width *
frame_height" in pixel count computations without considering that the multiplication result
may have overflowed the range of the arithmetic type. The implementation ensure that
any data outside of allocated and initialized memory cannot be read.

A decoder try to process the metadata whose type is not recognized by the
implementation. Failure to process any metadata exactly according to the syntax structure
specified put a decoder in an unknown status.

None of the content carried in APV is intended to be executable.

MUST
MUST NOT

MUST NOT

MUST

MUST NOT

MAY

11. IANA Considerations
This document has no actions for IANA.

12. References

12.1. Normative References

RFC 9924 APV February 2026

Lim, et al. Informational Page 54

[CIE15]

[CTA-861.3]

[H273]

[ISO11664-1]

[ISO9899]

[ITUT-T35]

[RFC2119]

[RFC8174]

[RFC9562]

, , , 2018,
.

, , , September 2019.

, ,
, , July 2024,
.

, ,
, 2019, .

, ,
, 2024, .

,
, , February 2000,

.

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

, , and , ,
, , May 2024,
.

CIE "Colorimetry, 4th Edition" DOI 10.25039/TR.015.2018 <https://cie.co.at/
publications/colorimetry-4th-edition>

CTA "HDR Static Metadata Extensions" CTA-861.3-A

ITU-T "Coding-independent code points for video signal type identification"
ITU-T Recommendation H.273 ISO/IEC 23091-2:2025 <https://
www.itu.int/rec/T-REC-H.273>

ISO "Colorimetry - Part 1: CIE standard colorimetric observers" ISO/CIE
11664-1:2019 <https://www.iso.org/standard/74164.html>

ISO/IEC "Information technology - Programming languages - C" ISO/IEC
9899:2024 <https://www.iso.org/standard/82075.html>

ITU-T "Procedure for the allocation of ITU-T defined codes for non-standard
facilities" ITU-T Recommendation T.35 <https://www.itu.int/rec/
T-REC-T.35>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Davis, K. Peabody, B. P. Leach "Universally Unique IDentifiers (UUIDs)"
RFC 9562 DOI 10.17487/RFC9562 <https://www.rfc-editor.org/info/
rfc9562>

[AMPAS]

[AOSP16APV]

[ASWF]

[FFmpegAPVdec]

[FFmpegAPVenc]

[OpenAPV]

12.2. Informative References

, .

,
.

, .

, 20 November 2025,
.

, 4 May 2025,

.

, , 16 December 2025,
.

"Academy of Motion Picture Arts and Science" <https://www.oscars.org/>

"Android open source project version 16" <https://developer.android.com/about/
versions/16/features#apv>

"The Academy Software Foundation" <https://www.aswf.io/>

"FFmpeg implementation of APV decoder" <https://
ffmpeg.org/download.html#release_8.0>

"FFmpeg implementation of APV encoder" <https://
git.ffmpeg.org/gitweb/ffmpeg.git/commit/
fab691edaf53bbf10429ef3448f1f274e5078395>

"OpenAPV" commit 1a7845a <https://github.com/
AcademySoftwareFoundation/openapv>

RFC 9924 APV February 2026

Lim, et al. Informational Page 55

https://cie.co.at/publications/colorimetry-4th-edition
https://cie.co.at/publications/colorimetry-4th-edition
https://www.itu.int/rec/T-REC-H.273
https://www.itu.int/rec/T-REC-H.273
https://www.iso.org/standard/74164.html
https://www.iso.org/standard/82075.html
https://www.itu.int/rec/T-REC-T.35
https://www.itu.int/rec/T-REC-T.35
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9562
https://www.rfc-editor.org/info/rfc9562
https://www.oscars.org/
https://developer.android.com/about/versions/16/features#apv
https://developer.android.com/about/versions/16/features#apv
https://www.aswf.io/
https://ffmpeg.org/download.html#release_8.0
https://ffmpeg.org/download.html#release_8.0
https://git.ffmpeg.org/gitweb/ffmpeg.git/commit/fab691edaf53bbf10429ef3448f1f274e5078395
https://git.ffmpeg.org/gitweb/ffmpeg.git/commit/fab691edaf53bbf10429ef3448f1f274e5078395
https://git.ffmpeg.org/gitweb/ffmpeg.git/commit/fab691edaf53bbf10429ef3448f1f274e5078395
https://github.com/AcademySoftwareFoundation/openapv
https://github.com/AcademySoftwareFoundation/openapv

Appendix A. Raw Bitstream Format

au_size
indicates the size of access unit in bytes. 0 is prohibited and 0xFFFFFFFF is reserved.

Figure 34: raw_bitstream_access_unit() syntax code

syntax code	type
raw_bitstream_access_unit(){ |
 au_size | u(32)
 access_unit(au_size) |
} |

Appendix B. APV Implementations

B.1. OpenAPV Open Source Project
The Academy Software Foundation (ASWF) , jointly founded by the Academy of Motion
Picture Arts and Science (AMPAS) and the Linux Foundation, has created an open
source software development project conformant to this document . The project also
provides various test vectors for verification of the implementations at

.

[ASWF]
[AMPAS]

[OpenAPV]
<https://github.com/

AcademySoftwareFoundation/openapv/tree/main/test/bitstream>

B.2. Android Open Source Project
The Android open source project (AOSP) has implemented Advanced Professional Video (APV)
conformant to this document .[AOSP16APV]

B.3. FFmpeg Open Source Project
The FFmpeg project is developing an APV decoder and an APV encoder

 conformant to this document.
[FFmpegAPVdec]

[FFmpegAPVenc]

Authors' Addresses
Youngkwon Lim
Samsung Electronics
6105 Tennyson Pkwy, Ste 300

, Plano TX 75024
United States of America

yklwhite@gmail.comEmail:

RFC 9924 APV February 2026

Lim, et al. Informational Page 56

https://github.com/AcademySoftwareFoundation/openapv/tree/main/test/bitstream
https://github.com/AcademySoftwareFoundation/openapv/tree/main/test/bitstream
mailto:yklwhite@gmail.com

Minwoo Park
Samsung Electronics
34, Seongchon-gil, Seocho-gu
Seoul
3573
Republic of Korea

m.w.park@samsung.comEmail:

Madhukar Budagavi
Samsung Electronics
6105 Tennyson Pkwy, Ste 300

, Plano TX 75024
United States of America

m.budagavi@samsung.comEmail:

Rajan Joshi
Samsung Electronics
11488 Tree Hollow Ln

, San Diego CA 92128
United States of America

rajan_joshi@ieee.orgEmail:

Kwang Pyo Choi
Samsung Electronics
34 Seongchon-gil Seocho-gu
Seoul
3573
Republic of Korea

kwangpyo.choi@gmail.comEmail:

RFC 9924 APV February 2026

Lim, et al. Informational Page 57

mailto:m.w.park@samsung.com
mailto:m.budagavi@samsung.com
mailto:rajan_joshi@ieee.org
mailto:kwangpyo.choi@gmail.com

	RFC 9924
	Advanced Professional Video
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terms
	2.1. Terms and Definitions
	2.2. Abbreviated Terms

	3. Conventions Used in This Document
	3.1. General
	3.2. Operators
	3.2.1. Arithmetic Operators
	3.2.2. Bitwise Operators

	3.3. Range Notation
	3.3.1. Order of Operations Precedence

	3.4. Variables, Syntax Elements, and Tables
	3.5. Processes

	4. Formats and Processes Used in This Document
	4.1. Bitstream Formats
	4.2. Source, Decoded, and Output Frame Formats
	4.3. Partitioning of a Frame
	4.3.1. Partitioning of a Frame into Tiles
	4.3.2. Spatial or Component-Wise Partitioning

	4.4. Scanning Processes
	4.4.1. Zig-Zag Scan
	4.4.2. Inverse Scan

	5. Syntax and Semantics
	5.1. Method of Specifying Syntax
	5.2. Syntax Functions and Descriptors
	5.2.1. byte_aligned()
	5.2.2. more_data_in_tile()
	5.2.3. next_bits(n)
	5.2.4. read_bits(n)
	5.2.5. Syntax Element Processing Functions

	5.3. List of Syntax and Semantics
	5.3.1. Access Unit
	5.3.2. Primitive Bitstream Unit
	5.3.3. Primitive Bitstream Unit Header
	5.3.4. Frame
	5.3.5. Frame Header
	5.3.6. Frame Information
	5.3.7. Quantization Matrix
	5.3.8. Tile Info
	5.3.9. Access Unit Information
	5.3.10. Metadata
	5.3.11. Filler
	5.3.12. Tile
	5.3.13. Tile header
	5.3.14. Tile Data
	5.3.15. Macroblock Layer
	5.3.16. AC Coefficient Coding
	5.3.17. Byte Alignment

	6. Decoding Process
	6.1. MB Decoding Process
	6.2. Block Reconstruction Process
	6.3. Scaling and Transformation Process
	6.3.1. Scaling Process for Transform Coefficients
	6.3.2. Process for Scaled Transform Coefficients
	6.3.2.1. General
	6.3.2.2. Transformation Process
	6.3.2.3. Transformation Matrix Derivation Process

	7. Parsing Process
	7.1. Process for Syntax Element Type h(v)
	7.1.1. Process for abs_dc_coeff_diff
	7.1.2. Process for coeff_zero_run
	7.1.3. Process for abs_ac_coeff_minus1
	7.1.4. Process for Variable-Length Codes

	7.2. Codeword Generation Process for h(v) (Informative)
	7.2.1. Process for abs_dc_coeff_diff
	7.2.2. Process for coeff_zero_run
	7.2.3. Process for abs_ac_coeff_minus1
	7.2.4. Process for Variable-Length Codes

	8. Metadata Information
	8.1. Metadata Payload
	8.2. List of Metadata Syntax and Semantics
	8.2.1. Filler Metadata
	8.2.2. Recommendation ITU-T T.35 Metadata
	8.2.3. Mastering Display Color Volume Metadata
	8.2.4. Content Light-Level Information Metadata
	8.2.5. User-Defined Metadata
	8.2.6. Undefined Metadata

	9. Profiles, Levels, and Bands
	9.1. Overview of Profiles, Levels, and Bands
	9.2. Requirements on Video Decoder Capability
	9.3. Profiles
	9.3.1. General
	9.3.2. 422-10 Profile
	9.3.3. 422-12 Profile
	9.3.4. 444-10 Profile
	9.3.5. 444-12 Profile
	9.3.6. 4444-10 Profile
	9.3.7. 4444-12 Profile
	9.3.8. 400-10 Profile

	9.4. Levels and Bands
	9.4.1. General
	9.4.2. Limits of Levels and Bands

	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Raw Bitstream Format
	Appendix B. APV Implementations
	B.1. OpenAPV Open Source Project
	B.2. Android Open Source Project
	B.3. FFmpeg Open Source Project

	Authors' Addresses

