Inter-Client Exchange Library
Version 1.0
X Consortium Standard

X Version 11, Release 6.4

Ralph Mor

X Consortium

Copyright © 1993, 1994, 1996 X Consortium

Permission is hereby granted, free of charge, yparson obtaining a cepof this software and associated
documentation files (théSoftware’), to deal in the Software without restriction, including without limita-
tion the rights to use, cgpmodify, merge, publish, distribte, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Saftis furnished to do so, subject to the following conditions:

The abee cpyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PRVIDED "AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANRBILITY, FIT-
NESS FOR A RRTICULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X
CONSOR'IUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FFROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other
wise to promote the sale, use or other dealings in this Software without prior written authorization from the
X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Owerview of ICE

There are numerous possible inter-client protocols, withyrdamilarities and common needs - authentica-
tion, version negotiation, byte order negotiation, and soTdre Inter-Client Exchange (ICE) protocol is
intended to provide a framerk for building such protocols, allowing them to realse of common rgo-
tiation mechanisms and to be multiead over a Sngle transport connection.

2. ThelCE Library - C Language Interface to ICE

A client that wishes to utilize ICE must firsgister the protocols it understands with the ICE librdtgch
protocol is dynamically assigned a major opcode ranging from 1-2%bc{iemts can use different major
opcodes for the same protocol). The next step for the client is either to open a connection with another
client or to wait for connections made by other clients. Authentication may be regéicdieént can both
initiate connections with other clients and baitimg for clients to connect to itself (a nested session man-
ager is an>xample). Oncean ICE connection is established between the dients, one of the clients
needs to initiate #rotocolSetupin order to "actiate” a given protocol. Oncehe other client accepts the
ProtocolSetup (once again, authentication may be required), tleedi@nts are ready to start passing mes-
sages specific to that protocol to each otivultiple protocols may be agg m a sngle ICE connection.
Clients are responsible for notifying the ICE library when a protocol is no longee actan ICE connec-
tion, although ICE does not definevheach subprotocol triggers a protocol shutdown.

The ICE library utilizes callbacks to process incoming messadsig callbacks allws ProtocolSetup
messages and authentication to happen behind the so&nexdditional benefit is that messagevene
need to be buffered up by the library when the client blocks waiting for a particular message.

3. IntendedAudience

This document is intended primarily for implementors of protocol libraries layered on top ofTiQE.

cally, applications that wish to utilize ICE will makalls into individual protocol libraries rather than
directly male alls into the ICE library Howeve, some applications will hae b make some initial calls

into the ICE library in order to accept ICE connections (for example, a session manager accepting connec-
tions from clients). But in general, protocol libraries should be designed to hide the inner details of ICE
from applications.

4. HeaderFiles and Library Name

The header file X11/ICE/ICElib.h > defines all of the ICElib data structures and function prototypes.
ICElib.h includes the header fileXxd 1/ICE/ICE.h >, which defines all of the ICElib constant8rotocol
libraries that need to read and write messages should include the headét TilklCE/ICEmsg.h>.

Applications should link against ICElib using -lICE.

5. Noteon Prefixes

The following name prefixes are used in the library to distinguish between a client that iniffates-a
colSetupand a client that responds withPaotocolReply:

. IcePo - Ice Protocol Originator
. IcePa - Ice Protocol Acceptor

6. Protocol Registration

In order for tvwo dients to exchange messages fonamgiprotocol, each side mustgister the protocol with

the ICE library The purpose of registration is for each side to obtain a major opcode for the protocol and to
provide callbacks for processing messages and handling authentictltiere are tw separate rgistration
functions:

. One to handle the side that doeBratocolSetup
. One to handle the side that responds witr@tocolReply

It is recommended that protocolgistration occur before the tndients establish an ICE connectioff.
protocol registration occurs after an ICE connection is created, there can be a brigf afitéme in which

Inter-Client Exchange Library X11, Release 6.4

a ProtocolSetup is receved, but the protocol is not gestered. Ifit is not possible to register a protocol
before the creation of an ICE connection, proper precautions should be takeid the aboe race condi-
tion.

The IceRegisterForProtocolSetupfunction should be called for the client that initiateBratocolSetup.

int IceRegisterbrProtocolSetupqrotocol_namevendor, release version_countversion_recs
auth_countauth_namegsauth_procsio_error_proc)
char *protocol_name
char *vendor,
char *elease
int version_count
IcePoVersionRecversion_recs
int auth_count
char **auth_namegs
IcePoAuthProc &uth_procs
IcelOErrorProdo_error_prog,

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocol.
version_count The number of different versions of the protocol supported.
version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication method.
io_error_proc 10 error handleror NULL.

IceRegisterForProtocolSetupreturns the major opcode reserved or -1 if an error occurred. In order to
actually actvate the protocol, théceProtocolSetup function needs to be called with this major opcode.
Once the protocol is agtited, all messages for the protocol should be sent using this major opcode.

A protocol library may support multiple versions of the same protocol. €son_recs argument speci-

fies a list of supported versions of the protocol, which are prioritized in decreasing order of preference.
Each version record consists of a major and minor version of the protocol as well as a callback to be used
for processing incoming messages.

typedef struct {

int major_version;

int minor_version;

IcePoProcessMsgProc process_msg_proc;
} | cePoVersionRec;

The IcePoProcessMsgProcallback is responsible for processing the set of messages that can @l recei
by the client that initiated thBrotocolSetup. For further information, see section 6.1, “Callbacks for Pro-
cessing Messagés.

Authentication may be required before the protocol can beconwe.agtie protocol library must gister

the authentication methods that it supports with the ICE librahe auth_names and auth_procguar

ments are a list of authentication names and callbacks that are prioritized in decreasing order of preference.
For information on thdcePoAuthProc callback, see section 6.2\ Uthentication Methods.

Inter-Client Exchange Library X11, Release 6.4

The IcelOErrorProc callback is inoked if the ICE connection unexpectedly break&u should pass
NULL for io_error_proc if not interested in being notifiellor further information, see section 1Error
Handling’

The IceRegisterForProtocolReply function should be called for the client that responds ter@o-
colSetupwith a ProtocolReply.

int IceRegisterbrProtocolReplyprotocol_namevendor, releasg version_countversion_recs

auth_counfauth_namesauth_procs host_based_auth_proprotocol_setup_proc
protocol_activate progio_error_proc)

char *protocol_name

char *vendor,

char *elease

int version_count

IcePaVersionRecversion_recs

int auth_count

char **auth_namegs

IcePaAuthProc duth_procs

IceHostBasedAuthPrdwost_based_auth_proc

IceProtocolSetupPrqgarotocol_setup_proc

IceProtocolActvateProcprotocol_activate pror

IcelOErrorProdo_error_prog,

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocol.
version_count The number of different versions of the protocol supported.
version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication method.

host_based_auth_proc
Host based authentication callback.

protocol_setup_proc
A callback to be imoked when authentication has succeeded fdPratocolSetup but
before theProtocolReply is sent.

protocol_activate_proc
A callback to be imoked &ter the ProtocolReply is sent.

io_error_proc 10 error handleror NULL.

IceRegisterForProtocolReply returns the major opcode reserved or -1 if an error occuifad. major
opcode should be used in all subsequent messages sent for this protocol.

A protocol library may support multiple versions of the same protocol. The version_recs argument speci-
fies a list of supportedevsions of the protocol, which are prioritized in decreasing order of preference.
Each version record consists of a major and minor version of the protocol as well as a callback to be used
for processing incoming messages.

Inter-Client Exchange Library X11, Release 6.4

typedef struct {

int major_version;

int minor_version;

IcePaProcessMsgProc process_msg_proc;
} | cePaVersionRec;

The IcePaProcessMsgProcallback is responsible for processing the set of messages that can\mlrecei
by the client that accepted thirotocolSetup. For further information, see section 6.1Cdllbacks for
Processing Messageés.

Authentication may be required before the protocol can beconwe.agtie protocol library must gister

the authentication methods that it supports with the ICE librahe auth_names and auth_procguar

ments are a list of authentication names and callbacks that are prioritized in decreasing order of preference.
For information on thdcePaAuthProc callback, see section 6.2\ Uthentication Methods.

If authentication dils and the client attempting to initiate tReotocolSetup has not required authentica-
tion, the IceHostBasedAuthProccallback is inoked with the host name of the originating client. If the
callback returnsTrue, the ProtocolSetup will succeed, een though the original authenticatioailed.
Note that authentication canfedtively be disabled by registering alceHostBasedAuthPro¢ which
always returns True. If no host based authentication is allowed, you should pass NULL for
host_based_auth_proc.

typedef Bool (*IlceHostBasedAuthProc) ();

Bool HostBasedAuthProbpst_namg
char *host_name

host_name The host name of the client that sent FvetocolSetup.

The host_name argument is a string of the fpratocol/hosthnamewhereprotocol is one of {tcp, decnet,
local}.

BecauseProtocolSetup messages and authentication happen behind the scenes via callbacks, the protocol
library needs some ay of being notified when th@rotocolSetup has completed. This occurs indw
phases. Irhe first phase, thieeProtocolSetupProccallback is inoked ater authentication has success-

fully completed bt before the ICE library sendsRaotocolReply. Any resources required for this proto-

col should be allocated at this time. If theeProtocolSetupProcreturns a successful status, the ICE
library will send theProtocolReply and then ioke the IceProtocolActivateProc callback. Otherwise,

an error will be sent to the other client in response tdtogocolSetup.

The IceProtocolActivateProc is an optional callback and should bgistered only if the protocol library
intends to generate a message immediately following’tb&ocolReply. You should pass NULL for pro-
tocol_actvate_proc if not interested in this callback.

Inter-Client Exchange Library X11, Release 6.4

'* typedef Status (*IceProtocolSetupProc) ();

Status ProtocolSetupPracé_connmajor_version minor_version vendor, release
client_data_retfailure_reason_ret
IceConnice_conn
int major_version
int minor_version
char *vendor,
char *elease
IcePointer tlient_data_ret
char **failure_reason_ret
ice_conn The ICE connection object.
major_version The major version of the protocol.
minor_version The minor version of the protocol.
vendor The vendor string registered by the protocol originator.
release The release string registered by the protocol originator.
client_data_ret Client data to be set by callback.

failure_reason_ret
‘ Falure reason returned.

The pointer stored in the client_data_reguament will be passed to tHeePaProcessMsgProcallback
wheneer a message has avad for this protocol on the ICE connection.

The vendor and release strings should be freedfrgghwhen thg are no longer needed.

If a failure occurs, théceProtocolSetupProcshould return a zero status as well as allocate and return a
failure reason string ireflure_reason_ret. THEE library will be responsible for freeing this memory.

The IceProtocolActivateProc callback is defined as follows:

'* typedef void (*lceProtocolActate Proc)();

void ProtocolActvateProc (ce_connclient_datg
IceConnice_conn
IcePointerclient_datg

ice_conn The ICE connection object.
‘ client_data The client data set in tHeeProtocolSetupProccallback.

The IcelOErrorProc callback is inoked if the ICE connection umpectedly breaks.You should pass
NULL for io_error_proc if not interested in being notifiellor further information, see section 1Error
Handling’

6.1. Callbacksfor Processing Messages

When an application detects that there i ata to read on an ICE connection (g@lec), it calls the
IceProcessMessagefsinction (see section 9, “Processing MessdpesVhen IceProcessMessagesads

an ICE message header with a major opcode other than zero (reserved for the ICE protocol), it needs to call
a function that will read the rest of the message, unpack it, and process it accordingly.

If the message awgs at he client that initiated th@rotocolSetup, the IcePoProcessMsgProcallback is

Inter-Client Exchange Library X11, Release 6.4

invoked.

typedef void (*lcePoProcessMsgProc)();

void PoProcessMsgProicé_connclient_datg opcode length, swap reply_wait, reply _ready_re}
IceConnice_conn
IcePointerclient_datg
int opcode
unsigned londength;
Bool swap
IceReplyWaitinfo teply_wait;
Bool *reply_ready_ret

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the ICE connection.
opcode The minor opcode of the message.

length The length (in 8-byte units) of the message beyond the ICE header.
swap A flag that indicates if byte swapping is necessary.

reply_wait Indicates if the imoking client is waiting for a reply.

reply_ready ret If set toTrue, a reply is ready.

If the message augs at he client that accepted tiiRrotocolSetup, the IcePaProcessMsgProcallback is
invoked.

typedef void (*lcePaProcessMsgProc)();

void PaProcessMsgProice_connclient_datg opcode length, swap
IceConnice_conn
IcePointerclient_datg

int opcode

unsigned londength;

Bool swap
ice_conn The ICE connection object.
client_data Client data associated with this protocol on the ICE connection.
opcode The minor opcode of the message.
length The length (in 8-byte units) of the message beyond the ICE header.
swap A flag that indicates if byte swapping is necessary.

In order to read the message, both of these callbacks should use the macros defined for this purpose (see
section 12.2, “Reading ICE Messadps'Note that byte swapping may be necessakg a ©nvenience,
the length field in the ICE header will be swapped by ICElib if necessary.

In both of these callbacks, the client_data argument is a pointer to client datashagistered a®roto-
colSetup time. Inthe case oficePoProcessMsgProcthe client data was set in the call liweProto-
colSetup. In the case ofcePaProcessMsgProcthe client data was set in theeProtocolSetupProccall-
back.

The IcePoProcessMsgProcallback needs to check the reply_waguanent. Ifreply_wait is NULL , the
ICE library expects the function to pass the message to the client via a caoaekample, if this is a
Session Managemengave Yourself’ message, this function should notify the client of tSave Your-
self” via a callback. The details of Wasuch a callback would be defined are implementation-dependent.

Inter-Client Exchange Library X11, Release 6.4

However, if reply_wait is not NULL , then the client is waiting for a reply or an error for a messageiit pre
ously sent. The reply_wait is of typeeReplyWaitinfo .

typedef struct {
unsigned long sequence_of request;
int major_opcode_of _request;
int minor_opcode_of _request;
IcePointer reply;

} | ceReplyWaitInfo;

IceReplyWaitinfo contains the major/minor opcodes and sequence number of the message for which a
reply is being waited. It also contains a pointer to the reply message to be filled in (the protocol library
should cast thidcePointer to the appropriate reply type). In most cases, the reply wik lsame fixed-

size part, and the client waiting for the reply wilvegrovided a pointer to a structure to hold thisetix

size data. If there isaviable-length data, it would be expected that ItePoProcessMsgProcallback

will have dlocate additional memory and store pointer(s) to that memory in thé-$ize structurelf

the entire data is variable length (for example., a singtiabie-length string), then the client waiting for

the reply vould probably just pass a pointer to fixed-size space to hold a peirdghelcePoProcessMs-

gProc callback would allocate the storage and store the poititey the responsibility of the client reeei

ing the reply to free anmemory allocated on its behalf.

If reply_wait is not NULL andicePoProcessMsgProchas a reply or error to return in response to this
reply_wait (that is, no callback was generated), then the reply_readygrehamt should be set fr ue.
Note that an error should only be returned if it corresponds to the reply being wait@tHerwise, the
IcePoProcessMsgProshould either handle the error internally orake an error handler for its library.

If reply_wait is NULL, then care must be taken not to storg \adue in reply_ready ret, because this
pointer may also be NULL.

The IcePaProcessMsgProcallback, on the other hand, shouldials pass the message to the client via a
callback. Br example, if this is a Session Manageménteract Requestmessage, this function should
notify the client of the “Interact Reque’stia a callback.

The reason thécePaProcessMsgProcallback does not ka a eply wait, like IcePoProcessMsgProc
does, is because a process that is acting as a server shaultloek for a reply (infinite blocking can
occur if the connecting client does not act propekyying access to other clients).

6.2. Authentication Methods

As already stated, a protocol library musiiséer the authentication methods that it supports with the ICE
library. For each authentication method, there ame dallbacks that may be registered:

. One to handle the side that initiateP@tocolSetup
. One to handle the side that accepts or rejects this request

IcePoAuthProc is the callback imoked for the client that initiated thEBrotocolSetup. This callback must
be able to respond to the initi&gh uthentication Requiredmessage or subsequetituthentication Ngt
Phase’'messages sent by the other client.

Inter-Client Exchange Library X11, Release 6.4

'* typedef IcePoAuthStatus (*lcePoAuthProc)();

IcePoAuthStatus PoAuthPrdcé_connauth_state ptrclean_up swap auth_datalenauth_data
reply_datalen_retreply _data_ret error_string_re
IceConnice_conn
IcePointer ‘auth_state ptr
Bool clean_up
Bool swap
int auth_datalen
IcePointerauth_data
int *reply_datalen_ret
IcePointer teply data_ret
char **error_string_ret

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback procedure.

clean_up If True, authentication is wer, and the function should clean upyastate it was main-
taining. Thelast 6 arguments should be ignored.

swap If True, the auth_data may ¥ be tyte swapped (depending on its contents).
auth_datalen The length (in bytes) of the authenticator data.
auth_data The data from the authenticator.

reply_datalen_ret
The length (in bytes) of the reply data returned.

reply_data_ret The reply data returned.

error_string_ret If the authentication procedure encounters an error during authentication, it should allo-
‘ cate and return an error string.

Authentication may require weral phases, depending on the authentication method. As a resultethe
PoAuthProc may be called more than once when authenticating a client, and some stateevitl ba
maintained between eachvatation. Atthe start of eacliProtocolSetup, *auth_state_ptr is NULL, and
the function should initialize its state and set this paintersubsequent wocations of the callback, the
pointer should be used to get ay atate previously stored by the callback.

If needed, the network ID of the client accepting BretocolSetup can be obtained by calling tHee-
ConnectionString function.

ICElib will be responsible for freeing the reply_data_ret and error_string_ret pointersegith

The auth_data pointer may point to a volatile block of memdiryhe data must beelpt beyond this
invocation of the callback, be sure to makopy of it.

The IcePoAuthProc should return one of four values:

. IcePoAuthHaveReply — a reply is aailable.

. IcePoAuthRejected— authentication rejected.
. IcePoAuthFailed — authentication failed.

. IcePoAuthDoneCleanup—- done cleaning up.

IcePaAuthProc is the callback imoked for the client that recegd the ProtocolSetup.

Inter-Client Exchange Library X11, Release 6.4

'* typedef IcePaAuthStatus (*lcePaAuthProc) ();

IcePaAuthStatusdAuthProci{ce_connauth_state ptrswap auth_datalenauth_data
reply_datalen_retreply _data_ret error_string_re
IceConnice_conn
IcePointer ‘auth_state ptr
Bool swap
int auth_datalen
IcePointerauth_data
int *reply_datalen_ret
IcePointer teply data_ret
char **error_string_ret,

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback procedure.

swap If True, auth_data may hee © be lyte swapped (depending on its contents).
auth_datalen The length (in bytes) of the protocol originator authentication data.
auth_data The authentication data from the protocol originator.

reply_datalen_ret
The length of the authentication data returned.

reply_data_ret The authentication data returned.
‘ error_string_ret If authentication is rejected or fails, an error string is returned.

Authentication may require w&ral phases, depending on the authentication meti®d.a result, the
IcePaAuthProc may be called more than once when authenticating a client, and some stateenil iea
maintained between eachvatation. At the start of eachProtocolSetup, auth_datalen is zero,
*auth_state_ptr is NULL, and the function should initialize its state and set this pdimtarbsequent
invocations of the callback, the pointer should be used to gey atada previously stored by the callback.

If needed, the network ID of the client accepting BretocolSetup can be obtained by calling tHee-
ConnectionString function.

The auth_data pointer may point to a volatile block of memdiryhe data must beelpt beyond this
invocation of the callback, be sure to makopy of it.

ICElib will be responsible for transmitting and freeing the reply_data_ret and error_string_ret pointers with
free.

The IcePaAuthProc should return one of four values:

. IcePaAuthContinue - continue (or start) authentication.
. IcePaAuthAccepted- authentication accepted.

. IcePaAuthRejected- authentication rejected.

. IcePaAuthFailed — authentication failed.

7. ICE Connections

In order for two dients to establish an ICE connection, one client has toditéngy for connections, and the
other client has to initiate the connection. Most clients will initiate connections, so we discuss that first.

7.1. Openingan ICE Connection

Inter-Client Exchange Library X11, Release 6.4

To open an ICE connection with another client (that is, waiting for connectionsjce®penConnection

'* IceConn IceOpenConnectiométwork_ids_listcontext must_authenticatenajor_opcode_check
error_length error_string_re)
char network_ids_list
IcePointercontext
Bool must_authenticate
int major_opcode_check
int error_length
char *error_string_ret

network_ids_listSpecifies the network ID(s) of the other client.

context A pointer to an opaque object or NULIUsed to determine if an ICE connection can be
shared (see below).

must_authenticate
If True, the other client may not bypass authentication.

major_opcode_check
Used to force a melCE connection to be created (see below).

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, ¥t arhe error_string_ret argument points to
‘ user supplied memaryNo more than error_length bytes are used.

IceOpenConnectionreturns an opaque ICE connection object if it succeeds; otherwise, it returns NULL.

The network_ids_list argument contains a list of mekMDs separated by commas. An attempt will be
made to use the first network I0f. that fails, an attempt will be made using the second network ID, and so
on. Eachetwork ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

Most protocol libraries will hee me sort of open function that should internally mak @ll into
IceOpenConnection WhenIceOpenConnectionis called, it may be possible to use avasly opened
ICE connection (if the tget client is the sameHowever, there are cases in which shared ICE connections
are not desired.

The context argument is used to determine if an ICE connection can be dfi@m@uext is NULL, then
the caller is alays willing to share the connection. If cortés not NULL, then the caller is not willing to
use a previously opened ICE connection that has a different non-NULL context associated with it.

In addition, if major_opcode_check contains a nonzero major opabde, & previously created ICE con-
nection will be used only if the major opcode is notvactn the connection. This can be used to force
multiple ICE connections betweendwlients for the same protocol.

Any authentication requirements are handled internally by the ICE librang method by which the
authentication data is obtained is implementation-dependent.t

After lceOpenConnectionis called, the client is ready to sendPeotocolSetup (provided thatlceRegis-
terForProtocolSetup was alled) or receie aProtocolSetup (provided thatlceRegisterForProtocolRe-
ply was called).

7.2. Listeningfor | CE Connections

Clients wishing to accept ICE connections must first IcalListenForConnectionsor IceListenForWell-
KnownConnections so that thg can listen for connectionsA list of opaque "listen" objects are returned,

T The X Consortiuns ICEIib implementation uses an .ICEauthority file (see Appendix A).

-10 -

Inter-Client Exchange Library X11, Release 6.4

one for each type of transport method thatvailable (for example, Unix Domain, TCBECnet, and so
on).

Normally clients will let ICElib allocate arvailable name in each transport and return listen objestsh

a dient will then uselceComposeNetworkldList to extract the chosen names and entalem aailable to
other clients for opening the connectidn. certain cases it may be necessary for a client to listen for con-
nections on pre-arranged transport object names. Such a client magliseenForWellKknownConnec-

tions to specify the names for the listen objects.

Status IceListendrConnectionsgount_ret listen_objs_reterror_length error_string_re)
int *count_ret
IceListenObj *isten_objs_ret
int error_length
char *error_string_ret

count_ret Returns the number of listen objects created.
listen_objs_ret Returns a list of pointers to opaque listen objects.
error_length The length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, ¥ arhe error_string_ret points to user sup-
plied memory No more than error_length bytes are used.

The return value ofceListenForConnectionsis zero for failure and a posié value for success.

Status IceListenForWellKmenConnectionggort_id, count_retlisten_objs_reterror_length error_string_red
char *port_id;
int *count_ret
IceListenObj *isten_objs_ret
int error_length
char *error_string_ret

port_id Specifies the port identification for the address(es) to be opdimedvalue must not con-
tain the slash“(/") or comma (' ,’) character; these are reserved for future use.

count_ret Returns the number of listen objects created.

listen_objs_ret Returns a list of pointers to opaque listen objects.

error_length The length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, ¥ arhe error_string_ret points to user sup-
plied memory No more than error_length bytes are used.

IceListenForWellKnownConnections constructs a list of netwk IDs by prepending each known trans-
port to port_id and then attempts to create listen objects for the rBsutt.id is the portnumbgobjname,

or path portion of the ICE network ID. If a listen object for a particular network ID cannot be created the
network ID is ignored. If no listen objects are createdListenForWellKknownConnections returns &il-

ure.

The return value ofceListenForWellKnownConnections is zero for &ilure and a posite value for suc-
cess.

To dose and free the listen objects, useFreeListenObjs.

-11 -

Inter-Client Exchange Library X11, Release 6.4

void IceFreeListenObjgjount listen_obj9
int count
IceListenObj tisten_objs

count The number of listen objects.
listen_objs The listen objects.

To detect a n& connection on a listen object, uselecton the descriptor associated with the listen object.

To abtain the descriptouse IceGetListenConnectionNumber.

int IceGetListenConnectionNumbdisten_obj
IceListenObjlisten_obj

listen_obj The listen object.

To dbtain the network ID string associated with a listen object)eeBetListenConnectionString.

char *IceGetListenConnectionStringgten_obj
IceListenObjlisten_obj

listen_obj The listen object.

A network ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

To compose a string containing a list of network IDs separated by commas (the format recognized by
IceOpenConnectior), uselceComposeNetworkldList.

char *IlceComposeNetwkidList (count listen_obj9
int count
IceListenObj tisten_objs
count The number of listen objects.
listen_objs The listen objects.

7.3. HostBased Authentication for ICE Connections

If authentication dils when a client attempts to open an ICE connection and the initiating client has not
required authentication, a host based authentication procedure maxpheel ito provide a last chance for

the client to connectEach listen object has such a callback associated with it, and this callback is set using
the IceSetHostBasedAuthProdunction.

void IceSetHostBasedAuthPrdisten_obj host_based_auth_prdc
IceListenObjlisten_obj
IceHostBasedAuthPrdwost_based_auth_proc

listen_obj The listen object.

-12 -

Inter-Client Exchange Library X11, Release 6.4

host_based_auth_proc
The host based authentication procedure.

By default, each listen object has no host based authentication procedure associate@®agmg.NULL
for host_based_auth_proc turn§lodst based authentication if it was previously set.

typedef Bool (*IlceHostBasedAuthProc) ();

Bool HostBasedAuthProbpst_namg
char *host_name

host_name The host name of the client that tried to open an ICE connection.

The host_name argument is a string in the fpratocol/hosthamewhereprotocol is one of {tcp, decnet,
local}.

If lceHostBasedAuthProcreturnsTrue, access will be grantedyven though the original authentication
failed. Notethat authentication canfettively be disabled by registering deeHostBasedAuthProg
which alvays returnsTr ue.

Host based authentication is also allowedPatdtocolSetuptime. Thecallback is specified in theeeReg-
isterForProtocolReply function (see section 6, “Protocol Registration”).

7.4. AcceptingIlCE Connections

After a connection attempt is detected on a listen object returnk@bigtenForConnections you should
call IceAcceptConnection This returns a e opaque ICE connection object.

IceConn IceAcceptConnectioligten_obj status_re}
IceListenObjlisten_obj
IceAcceptStatusstatus_ret

listen_obj The listen object on which aweconnection was detected.
status_ret Return status information.

The status_ret argument is set to one of the following values:

. IceAcceptSuccess- the accept operation succeeded, and the function returns @on@ection
object.

. IceAcceptFailure — the accept operation failed, and the function returns NULL.

. IceAcceptBadMalloc — a memory allocation failed, and the function returns NULL.

In general, to detect meconnections, you should cadelecton the file descriptors associated with the lis-
ten objects. When a wmeconnection is detected, theeAcceptConnection function should be called.
IceAcceptConnectionmay return a ne ICE connection that is in a pending state. This is because before
the connection can become valid, authentication may be neceBsmguse the ICE library cannot block
and wait for the connection to becoradid (infinite blocking can occur if the connecting client does not
act properly), the application must wait for the connection status to become valid.

The following pseudo-code demonstratew ltonnections are accepted:

-13 -

Inter-Client Exchange Library X11, Release 6.4

new_ice_conn = IceAcceptConnection (listen_obj, &accept_status);
if (accept_status != IceAcceptSuccess)

{
}

status = IceConnectionStatus (new_ice_conn);
time_start = time_now;

close the file descriptor and return

while (status == IceConnectPending)

{

select() on {new_ice_conn, all open connections}

for (each ice_conn in the list of open connections)
if (data ready on ice_conn)

{ status = IceProcessMessages (ice_conn, NULL, NULL);
if (status == IceProcessMessages|OError)
IceCloseConnection (ice_conn);
}
if (data ready on new_ice_conn)
{
/*
* | ceProcessMessages is called until the connection
*is non-pending. Doingo handles the connection
* setup request and gauthentication requirements.
*/
IceProcessMessages (new_ice_conn, NULL, NULL);
status = IceConnectionStatus (new_ice_conn);
}
else
{
if (time_now - time_start > MAX_WAIT_TIME)
status = IceConnectRejected;
}
}
if (status == IceConnectAccepted)
{ Add new_ice_conn to the list of open connections
}
else
{
IceCloseConnection (new_ice_conn);
}

After lceAcceptConnectionis called and the connection has been validated, the client is ready e icei
ProtocolSetup (provided thatlceRegisterForProtocolReply was called) or send @&rotocolSetup (pro-
vided thatlceRegisterForProtocolSetupwas clled).

- 14 -

Inter-Client Exchange Library X11, Release 6.4

7.5. ClosingICE Connections

To dose an ICE connection created witeOpenConnectionor IceAcceptConnection use IceCloseC-
onnection.

'* IceCloseStatus IceCloseConnectime(conr)
IceConnice_conn

‘ ice_conn The ICE connection to close.

To actually close an ICE connection, the following conditions must be met:

. The open efeence counimust hae reached zero on this ICE connectioWhen IceOpenConnec-
tion is called, it tries to use a pieusly opened ICE connection. If it is able to use an existing con-
nection, it increments the open reference count on the connection by one. So, to close an ICE con-
nection, each call ttceOpenConnectionmust be matched with a call tceCloseConnection The
connection can be closed only on the last calé#CloseConnection

. Theactive protocol counimust hae reached zero. Each timeRaotocolSetup succeeds on the con-
nection, the acte pgrotocol count is incremented by on&/hen the client no longer expects to use
the protocol on the connection, theeProtocolShutdown function should be called, which decre-
ments the acte protocol count by one (see section 8, “Protocol Setup and Shutdown”).

. If shutdawvn negotiation is enabled on the connection, the client on the other side of the ICE connec-
tion must agree to ka the connection closed.

IceCloseConnectionreturns one of the following values:

. IceClosedNow- the ICE connection was closed at this time. The watch procedures wekedin
and the connection was freed.

. IceClosedASAP - an 10 aror had occurred on the connectiont iceCloseConnectionis being
called within a nestetteProcessMessagesThe watch procedures Ve been ivoked at this time,
but the connection will be freed as soon as possible (when the nesghgeleches zero andePro-
cessMessageeturns a status déeProcessMessagesConnectionCloged

. IceConnectioninUse- the connection was not closed at this time, because it is being used by other
active protocols.

. IceStartedShutdownNegotiation— the connection as not closed at this time and shutdowgatie
ation started with the client on the other side of the ICE connection. When the connection is actually
closed,IceProcessMessagesill return a status ofceProcessMessagesConnectionClosed

When it is known that the client on the other side of the ICE connection has terminated the connection
without initiating shutdown rgotiation, thelceSetShutdownNegotiationfunction should be called to turn
off shutdown ngotiation. Thiswill prevent IceCloseConnectionfrom writing to a broken connection.

'* void IceSetShutdownNgotiation (ce_connnegotiatg
IceConnice_conn
Bool negotiate

ice_conn A valid ICE connection object.
‘ negotiate If False, shutdown negotiating will be turned off.

To check the shutdown negotiation status of an ICE connectiorice€deckShutdownNegotiation

'* Bool IceCheckShutdownNetiation (ce_conn
IceConnice_conn

-15-

Inter-Client Exchange Library X11, Release 6.4

ice_conn A valid ICE connection object.

IceCheckShutdownNegotiationreturnsTr ue if shutdown negotiation will tak dace on the connection;
otherwise, it return§alse. Negpotiation is on by default for a connection. It can only be changed with the
IceSetShutdownNegotiationfunction.

7.6. ConnectionWatch Procedures

To add a vatch procedure that will be called each time ICElib opensiacnanection vialceOpenCon-
nection or lceAcceptConnectionor closes a connection vigeCloseConnection use IceAddConnec-
tionWatch.

Status lceAddConnectiordith vatch_progclient_datg
IceWatchProavatch_prog
IcePointerclient_datg

watch_proc The watch procedure tovioke when ICElib opens or closes a connection.
client_data This pointer will be passed to the watch procedure.

The return value ofceAddConnectionWatch is zero for failure, and a posi#i value for success.

Note that seeral calls tolceOpenConnectionmight share the same ICE connection. In such a case, the
watch procedure is only woked when the connection is first created (after authentication succe®ids).

larly, because connections might be shared, th&chvprocedure is called only iEeCloseConnection
actually closes the connection (right before the IceConn is freed).

The watch procedures are very useful for applications that need to add a file descriptor to a select mask
when a n& connection is created and remothe file descriptor when the connection is desd
Because connections are sharedwkng when to add and remwe the file descriptor from the select mask

would be difficult without the watch procedures.

Multiple watch procedures may be registered with the ICE libriity assumptions should be made about
their order of imocation.

If one or more ICE connections were already created by the ICE library at the time the watch procedure is
registered, the watch procedure will instantly beoked for each of these ICE connections (with the open-
ing argument set tdr ue).

The watch procedure is of typeeWatchProc.

typedef void (*lceWatchProc)();

void WatchProcice_connclient_datg opening watch_datag
IceConnice_conn
IcePointerclient_datg
Bool opening
IcePointer Yvatch_data

ice_conn The opened or closed ICE connectioBall IceConnectionNumber to get the file
descriptor associated with this connection.

client_data Client data specified in the call tbeAddConnectionWatch.

opening If True, the connection is being opened.Hdlse, the connection is being closed.

watch_data Can be used to ga a winter to client data.

If opening isTrue, the client should set the *watch_data pointer tp @ata it may need to ga wntil the
connection is closed and the watch procedurevikad agan with opening set té-alse.

-16 -

Inter-Client Exchange Library X11, Release 6.4

To remove a vatch procedure, udeeRemoveConnectionWatch.

void IceRem@eConnectionVétch vatch_progclient_datg
IceWatchProavatch_prog
IcePointerclient_datg

watch_proc The watch procedure that was passelt¢®ddConnectionWatch.
client_data The client_data pointer that was passett&AddConnectionWatch.

8. Protocol Setup and Shutdown
To activate a protocol on a gén ICE connection, uskeProtocolSetup

IceProtocolSetupStatus IceProtocolSetop (connmy_opcodeclient_data must_authenticate
major_version_retminor_version_retvendor_ret release_reterror_length error_string_re)
IceConnice_conn
int my_opcode
IcePointerclient_datg
Bool must_authenticate
int *major_version_ret
int *minor_version_ret
char **vendor_ret
char **release_ret
int error_length
char *error_string_ret

ice_conn A valid ICE connection object.

my_opcode The major opcode of the protocol to be set up, as returnelddRegisterForProto-
colSetup.

client_data The client data stored in this pointer will be passed toldtkBoProcessMsgProccall-
back.

must_authenticate
If True, the other client may not bypass authentication.

major_version_ret
The major version of the protocol to be used is returned.

minor_version_ret
The minor version of the protocol to be used is returned.

vendor_ret The vendor string specified by the protocol acceptor.
release_ret The release string specified by the protocol acceptor.
error_length Specifies the length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, ¥t afhe error_string_ret argument points to
user supplied memaryNo more than error_length bytes are used.

The vendor_ret and release_ret strings should be freedregthvhen no longer needed.
IceProtocolSetupreturns one of the following values:

. IceProtocolSetupSuccess- the major_version_ret, minor_version_ret, vendor_ret, release_ret are
set.
. IceProtocolSetupFailure or IceProtocolSetuplOError — check error_string_ret for failure reason.

The major_version_ret, minor_version_ret, vendor_ret, release_ret are not set.

-17 -

Inter-Client Exchange Library X11, Release 6.4

. IceProtocolAlreadyActive — this protocol is already agg o this connection. The majorew
sion_ret, minor_version_ret, vendor_ret, release_ret are not set.

To notify the ICE library when a géen protocol will no longer be used on an ICE connection, las€ro-
tocolShutdown.

Status IceProtocolShutadm (ice_connmajor_opcodé
IceConnice_conn
int major_opcode

ice_conn A valid ICE connection object.

major_opcode The major opcode of the protocol to shut down.

The return value ofceProtocolShutdownis zero for failure and a posié value for success.

Falure will occur if the major opcode wasvee regstered OR the protocol of the major opcode wagme
activated on the connection. By addted, we mean that BRrotocolSetup succeeded on the connection.
Note that ICE does not definewneach sub-protocol triggers a protocol shutdown.

9. Processing Messages
To process incoming messages on an ICE connectioriceBeocessMessages

IceProcessMessagesStatus IceProcessMessagasinnreply wait, reply _ready_re}
IceConnice_conn
IceReplyWaitinfo teply_wait;
Bool *reply_ready_ret

ice_conn A valid ICE connection object.

reply_wait Indicates if a reply is being waited for.
reply_ready ret If set toTrue on return, a reply is ready.

IceProcessMessages used in tw ways:

. In the first, a client may generate a message and block by chlbfgyocessMessagerepeatedly
until it gets its reply.

. In the second, a client callseProcessMessagewith reply_wait set to NULL in response $elect
shaving that there is data to read on the ICE connecfidre ICE library may process zero or more
complete messages. Note that messages that are not blocked favagteeprbcessed by woking
callbacks.

IceReplyWaitinfo contains the major/minor opcodes and sequence number of the message for which a
reply is being waited. It also contains a pointer to the reply message to be filled in (the protocol library

should cast thidcePointer to the appropriate reply type). In most cases, the reply wik lsame fixed-
size part, and the client waiting for the reply wilvbgrovided a pointer to a structure to hold thisetix
size data. If there is variable-length data, dud be expected that tHeePoProcessMsgProcallback
will have dlocate additional memory and store pointer(s) to that memory in the fixed-size strutture.
the entire data is variable length (foaenple, a single variable-length string), then the client waiting for the
reply would probably just pass a pointer to fixed-size space to hold a pamttehe lcePoProcessMsg-
Proc callback would allocate the storage and store the pairtés the responsibility of the client ree@ig
the reply to free up tmemory allocated on its behalf.

-18 -

Inter-Client Exchange Library X11, Release 6.4

typedef struct {
unsigned long sequence_of request;
int major_opcode_of _request;
int minor_opcode_of _request;
IcePointer reply;

} | ceReplyWaitInfo;

If reply_wait is not NULL andiceProcessMessagebas a reply or error to return in response to this
reply_wait (that is, no callback was generated), then the reply_ready_ret argument will bEr get to

If reply_wait is NULL, then the caller may also pass NULL for reply_ready_ret and be guaranteed that no
value will be stored in this pointer.

IceProcessMessagea®turns one of the following values:
. IceProcessMessagesSuccessio gror occurred.

. IceProcessMessageslOError- an 10 eror occurred, and the caller musipécitly close the con-
nection by callingceCloseConnection

. IceProcessMessagesConnectionClosedthe ICE connection has been closed (closing of the con-
nection was deferred because of shwtdmegotiation, or because theeProcessMessagesesting
level was not zero). Do not attempt to access the ICE connection at this point, since it has been freed.

10. Ping
To nd a “Ping’ message to the client on the other side of the ICE connectioigaRiag.

Status IcePing¢e_connping_reply_prog client_datg
IceConnice_conn
IcePingReplyProping_reply prog
IcePointerclient_datg

ice_conn A valid ICE connection object.

ping_reply_proc The callback to imoke when the Ping reply augs.

client_data This pointer will be passed to theePingReplyProc callback.

IcePing returns zero for failure and a pogdivalue for success.
When IceProcessMessaggsrocesses the Ping repiywill invoke the IcePingReplyProc callback.

typedef void (*lcePingReplyProc)();

void PingReplyProci¢e_connclient_datg
IceConnice_conn
IcePointerclient_datg

ice_conn The ICE connection object.
client_data The client data specified in the calllzePing.

11. UsingICElib Informational Functions

IceConnectStatus IceConnectionStaices (conr)
IceConnice_conn

-19 -

Inter-Client Exchange Library X11, Release 6.4

IceConnectionStatusreturns the status of an ICE connection. The possible return values are:

. IceConnectPending- the connection is not valid yet (that is, authentication is taking plddgs.is
only relevant to connections created lbgeAcceptConnection

. IceConnectAccepted- the connection has been accepted. This is onlyami¢o connections cre-
ated bylceAcceptConnection

. IceConnectRejected- the connection had been rejected (that is, authenticailead). Thisis only
relevant to connections created geAcceptConnection

. IceConnectlOError — an 1O aror has occurred on the connection.

char *Ice\éndor {ce_conr)
IceConnice_conn

IceVendor returns the ICE library vendor identification for the other side of the conneclima.string
should be freed with a call foee when no longer needed.

char *IceReleaséage_conn)
IceConnice_conn

IceReleasereturns the release identification of the ICE library on the other side of the connddtien.
string should be freed with a call teee when no longer needed.

int IceProtocol¥rsion {ce_conp
IceConnice_conn

IceProtocolVersion returns the major version of the ICE protocol on this connection.

int IceProtocolReision (ice_conp
IceConnice_conn

IceProtocolRevisionreturns the minor version of the ICE protocol on this connection.

int lceConnectionNumbeige_conr)
IceConnice_conn

IceConnectionNumberreturns the file descriptor of this ICE connect