BIND 9 Administrator Reference
Manual

INTERNET
SYSTEMS
CONSORTIUM

Copyright (©) 2004, 2005, 2006, 2007 Internet Systems Consortium, Inc. ("ISC”)
Copyright © 2000, 2001, 2002, 2003 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all
copies.

THE SOFTWARE IS PROVIDED ”AS IS” AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROHITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Contents

Introduction
1.1 Scopeof Document
1.2 Organization of ThisDocument
1.3 Conventions Used in This Document
14 The Domain Name System (DNS)
141 DNSFundamentals. e
142 Domainsand DomainNames
143 Zones.
144 Authoritative Name Servers L e
1441 ThePrimaryMaster
1442 SlaveServers o i
1443 StealthServers e
145 CachingNameServers
1451 Forwarding
14.6 Name Serversin MultipleRoles
BIND Resource Requirements
2.1 Hardwarerequirements
22 CPURequirements
2.3 Memory Requirements
2.4 Name Server Intensive Environment Issues
2.5 Supported Operating Systems L
Name Server Configuration
3.1 Sample Configurations
3.1.1 AcCaching-only NameServer
3.1.2 An Authoritative-only Name Server
32 LoadBalancing
3.3 NameServerOperations e
3.3.1 Tools for Use With the Name Server Daemon
3.3.11 DiagnosticTools
3.3.1.2 Administrative Tools L.
332 Signals e
Advanced DNS Features
41 Notify e
42 DynamicUpdate
421 Thejournalfile
4.3 Incremental Zone Transfers (IXFR)
44 SplitDNS. e
441 Examplesplit DNSsetup
45 TSIG . .
45.1 Generate Shared Keys for Each Pairof Hosts
45.1.1 Automatic Generation. L
451.2 Manual Generation o
45.2 Copying the Shared Secret to Both Machines
45.3 Informing the Servers of the Key’s Existence
454 Instructing the ServertoUsetheKey
455 TSIGKeyBased AccessControl.
45.6 Errors.
4.6 TKEY . . . o
47 SIG(0) . . . o
4.8 DNSSEC

O O O 0 00 0 O NI NI NI

CONTENTS

481 GeneratingKeys 26
482 SigningtheZone 26

483 Configuring Servers 27

49 IPv6SupportinBIND9 28
49.1 Address Lookups Using AAAARecords 28
49.2 Address to Name Lookups Using Nibble Format. 28

The BIND 9 Lightweight Resolver 29
51 The Lightweight Resolver Library 29
52 RunningaResolver Daemon 29
BIND 9 Configuration Reference 31
6.1 ConfigurationFileElements 0. 31
6.1.1 AddressMatch Lists 32
6.1.1.1 Syntax 32

6.1.1.2 Definitionand Usage 32

6.1.2 CommentSyntax e 33
6.1.2.1 Syntax e 33

6.12.2 Definitionand Usage 33

6.2 Configuration File Grammar. L 34
6.2.1 aclStatement Grammar L 35

6.2.2 acl Statement Definitionand Usage 35

6.2.3 controls Statement Grammar L L Lo o 35

6.24 controls Statement Definitionand Usage 35

6.2.5 include Statement Grammar Lo Lo Lo 36

6.2.6 include Statement Definitionand Usage 36
6.2.7 keyStatement Grammar L 36

6.2.8 key Statement Definitionand Usage 36

6.29 logging Statement Grammar oo 37
6.2.10 logging Statement Definitionand Usage 37
6.2.10.1 Thechannel Phrase 38

6.2.10.2 ThecategoryPhrase 40

6.2.11 lwres Statement Grammar. L Lo 41
6.2.12 lwres Statement Definitionand Usage 41
6.2.13 masters Statement Grammar L oL o 42
6.2.14 masters Statement Definitionand Usage 42
6.2.15 options Statement Grammar L Lo oo 42
6.2.16 options Statement Definitionand Usage 44
6.2.16.1 BooleanOptions 46

62162 Forwarding 50

6.2.16.3 Dual-stackServers L L 51

62164 AccessControl 51

6.2.16.5 Interfaces 52

6.216.6 Query Address 53

6.2.16.7 ZoneTransfers 53

6.2.16.8 Bad UDP PortLists 55

6.2.16.9 Operating System Resource Limits 56

6.2.16.10 Server Resource Limits 56

6.2.16.11 Periodic Task Intervals 57

6.216.12 Topology e 57

6.2.16.13 The sortlist Statement 58

6.216.14 RRsetOrdering 59

621615 Tuning 59

6.2.16.16 Built-in server informationzones 61

6.2.16.17 Built-in Empty Zones o L 61

6.2.16.18 The Statistics File 63

6.2.16.19 Additional Section Caching 64

6.2.17 server Statement Grammar oo 64
6.2.18 server Statement Definitionand Usage 65

CONTENTS

6.2.19 trusted-keys Statement Grammar 0L
6.2.20 trusted-keys Statement Definitionand Usage.
6.2.21 view Statement Grammar e e e e e e e e
6.2.22 view Statement Definitionand Usage
6.2.23 zone Statement Grammar e e e e e e
6.2.24 zone Statement Definitionand Usage
62241 ZoneTypes e
6.2242 ClasS. . . v v v v i e e e
62243 ZoneOptions.
6.2.244 Dynamic Update Policies
6.3 ZoneFile e e e e
6.3.1 Types of Resource Records and WhentoUse Them
6.3.1.1 ResourceRecords
6.3.1.2 Textualexpressionof RRs.
6.3.2 Discussionof MX Records
6.33 SettingTTLs
634 Inverse MappinginIPv4. o
6.3.5 Other Zone File Directives e
6.3.5.1 The $ORIGIN Directive it ..
6.3.5.2 The $INCLUDE Directive it
6.353 The$TTL Directive it
6.3.6 BIND Master File Extension: the $GENERATE Directive
6.3.7 Additional File Formats
7 BIND 9 Security Considerations
7.1 AccessControl Lists. e e e
7.2 Chrootand Setuid e
721 ThechrootEnvironment
722 Using thesetuid Function
7.3 Dynamic Update Security
Troubleshooting
8.1 CommonProblems e e
8.1.1 It's not working; how can I figure out what'swrong?
8.2 Incrementing and Changing the Serial Number
83 WhereCanlIGetHelp?
Appendices
Al Acknowledgments
A.1.1 ABrief Historyof the DNSand BIND
A.2 General DNS Reference Information
A21 IPv6addresses (AAAA) o i i e
A.3 Bibliography (and Suggested Reading)
A.3.1 Requestfor Comments (RFCs)
A32 InternetDrafts e e
A.3.3 Other Documents About BIND
Manual pages
Bl dig
B.2 host e e
B.3 dnssec-keygen
B4 dnssec-signzone
B.5 named-checkconf
B.6 named-checkzone e e e e e
B.7 mamed e e
B.8 rndc e e e
B9 rndc.conf e e e
B.10 rndc-confgen

Chapter 1

Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in the
Internet in a hierarchical manner, the rules used for delegating authority over names, and the system
implementation that actually maps names to Internet addresses. DNS data is maintained in a group of
distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) implements a domain name server for a number of oper-
ating systems. This document provides basic information about the installation and care of the Internet
Systems Consortium (ISC) BIND version 9 software package for system administrators.

This version of the manual corresponds to BIND version 9.4.

1.2 Organization of This Document

In this document, Section 1 introduces the basic DNS and BIND concepts. Section 2 describes resource
requirements for running BIND in various environments. Information in Section 3 is task-oriented in its
presentation and is organized functionally, to aid in the process of installing the BIND 9 software. The
task-oriented section is followed by Section 4, which contains more advanced concepts that the system
administrator may need for implementing certain options. Section 5 describes the BIND 9 lightweight
resolver. The contents of Section 6 are organized as in a reference manual to aid in the ongoing mainte-
nance of the software. Section 7 addresses security considerations, and Section § contains troubleshooting
help. The main body of the document is followed by several appendices which contain useful reference
information, such as a bibliography and historic information related to BIND and the Domain Name
System.

1.3 Conventions Used in This Document

In this document, we use the following general typographic conventions:

To describe: We use the style:
a pathname, filename, URL, hostname, mailing | Fixed width
list name, or new term or concept
literal user input Fixed Width Bold
program output Fixed Width

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords Fixed Width
variables Fixed Width
Optional input [Text is enclosed in square brackets]

1.4 The Domain Name System (DNS)

The purpose of this document is to explain the installation and upkeep of the BIND (Berkeley Internet
Name Domain) software package, and we begin by reviewing the fundamentals of the Domain Name
System (DNS) as they relate to BIND.

1.4.1 DNS Fundamentals

The Domain Name System (DNS) is a hierarchical, distributed database. It stores information for map-
ping Internet host names to IP addresses and vice versa, mail routing information, and other data used
by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one or more
name servers and interprets the responses. The BIND 9 software distribution contains a name server,
named, and two resolver libraries, liblwres and libbind.

1.4.2 Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according to or-
ganizational or administrative boundaries. Each node of the tree, called a domain, is given a label. The
domain name of the node is the concatenation of all the labels on the path from the node to the root node.
This is represented in written form as a string of labels listed from right to left and separated by dots. A
label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc. could be ourhost .example.com,
where comis the top level domain to which curhost . example . combelongs, example is a subdomain
of com, and ourhost is the name of the host.

For administrative purposes, the name space is partitioned into areas called zones, each starting at a
node and extending down to the leaf nodes or to nodes where other zones start. The data for each zone
is stored in a name server, which answers queries about the zone using the DNS protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some of the
supported resource record types are described in Section 6.3.1.

For more detailed information about the design of the DNS and the DNS protocol, please refer to the
standards documents listed in Section A.3.1.

1.4.3 Zones

To properly operate a name server, it is important to understand the difference between a zone and a
domain.

As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those contigu-
ous parts of the domain tree for which a name server has complete information and over which it has
authority. It contains all domain names from a certain point downward in the domain tree except those

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

which are delegated to other zones. A delegation point is marked by one or more NS records in the
parent zone, which should be matched by equivalent NS records at the root of the delegated zone.

For instance, consider the example . com domain which includes names such as host .aaa.example.
comand host .bbb.example.comeven though the example.com zone includes only delegations for
the aaa.example.comand bbb.example.comzones. A zone can map exactly to a single domain, but
could also include only part of a domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that is, has no subdomains. Every subdomain
is a domain and every domain except the root is also a subdomain. The terminology is not intuitive and
we suggest that you read RFCs 1033, 1034 and 1035 to gain a complete understanding of this difficult
and subtle topic.

Though BIND is called a “"domain name server”, it deals primarily in terms of zones. The master and
slave declarations in the named. conf file specify zones, not domains. When you ask some other site
if it is willing to be a slave server for your domain, you are actually asking for slave service for some
collection of zones.

1.4.4 Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data for the
zone. To make the DNS tolerant of server and network failures, most zones have two or more authori-
tative servers, on different networks.

Responses from authoritative servers have the “authoritative answer” (AA) bit set in the response pack-
ets. This makes them easy to identify when debugging DNS configurations using tools like dig (Sec-
tion 3.3.1.1).

1.4.4.1 The Primary Master

The authoritative server where the master copy of the zone data is maintained is called the primary
master server, or simply the primary. Typically it loads the zone contents from some local file edited by
humans or perhaps generated mechanically from some other local file which is edited by humans. This
file is called the zone file or master file.

In some cases, however, the master file may not be edited by humans at all, but may instead be the result
of dynamic update operations.

1.4.4.2 Slave Servers

The other authoritative servers, the slave servers (also known as secondary servers) load the zone con-
tents from another server using a replication process known as a zone transfer. Typically the data are
transferred directly from the primary master, but it is also possible to transfer it from another slave. In
other words, a slave server may itself act as a master to a subordinate slave server.

1.4.4.3 Stealth Servers

Usually all of the zone’s authoritative servers are listed in NS records in the parent zone. These NS
records constitute a delegation of the zone from the parent. The authoritative servers are also listed in the
zone file itself, at the fop level or apex of the zone. You can list servers in the zone’s top-level NS records
that are not in the parent’s NS delegation, but you cannot list servers in the parent’s delegation that are
not present at the zone’s top level.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS records.
Stealth servers can be used for keeping a local copy of a zone to speed up access to the zone’s records or
to make sure that the zone is available even if all the ”official” servers for the zone are inaccessible.

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

A configuration where the primary master server itself is a stealth server is often referred to as a "hidden
primary” configuration. One use for this configuration is when the primary master is behind a firewall
and therefore unable to communicate directly with the outside world.

1.4.5 Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they are not
capable of performing the full DNS resolution process by themselves by talking directly to the authori-
tative servers. Instead, they rely on a local name server to perform the resolution on their behalf. Such
a server is called a recursive name server; it performs recursive lookups for local clients.

To improve performance, recursive servers cache the results of the lookups they perform. Since the
processes of recursion and caching are intimately connected, the terms recursive server and caching server
are often used synonymously.

The length of time for which a record may be retained in the cache of a caching name server is controlled
by the Time To Live (TTL) field associated with each resource record.

1.4.5.1 Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself. Instead,
it can forward some or all of the queries that it cannot satisfy from its cache to another caching name
server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until the list is exhausted or an
answer is found. Forwarders are typically used when you do not wish all the servers at a given site
to interact directly with the rest of the Internet servers. A typical scenario would involve a number
of internal DNS servers and an Internet firewall. Servers unable to pass packets through the firewall
would forward to the server that can do it, and that server would query the Internet DNS servers on the
internal server’s behalf.

1.4.6 Name Servers in Multiple Roles

The BIND name server can simultaneously act as a master for some zones, a slave for other zones, and
as a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service are
logically separate, it is often advantageous to run them on separate server machines. A server that
only provides authoritative name service (an authoritative-only server) can run with recursion disabled,
improving reliability and security. A server that is not authoritative for any zones and only provides
recursive service to local clients (a caching-only server) does not need to be reachable from the Internet
at large and can be placed inside a firewall.

10

Chapter 2

BIND Resource Requirements

2.1 Hardware requirements

DNS hardware requirements have traditionally been quite modest. For many installations, servers that
have been pensioned off from active duty have performed admirably as DNS servers.

The DNSSEC features of BIND 9 may prove to be quite CPU intensive however, so organizations that
make heavy use of these features may wish to consider larger systems for these applications. BIND 9 is
fully multithreaded, allowing full utilization of multiprocessor systems for installations that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i486-class machines for serving of static zones without caching,
to enterprise-class machines if you intend to process many dynamic updates and DNSSEC signed zones,
serving many thousands of queries per second.

2.3 Memory Requirements

The memory of the server has to be large enough to fit the cache and zones loaded off disk. The max-
cache-size option can be used to limit the amount of memory used by the cache, at the expense of
reducing cache hit rates and causing more DNS traffic. Additionally, if additional section caching (Sec-
tion 6.2.16.19) is enabled, the max-acache-size option can be used to limit the amount of memory used
by the mechanism. It is still good practice to have enough memory to load all zone and cache data into
memory — unfortunately, the best way to determine this for a given installation is to watch the name
server in operation. After a few weeks the server process should reach a relatively stable size where
entries are expiring from the cache as fast as they are being inserted.

2.4 Name Server Intensive Environment Issues

For name server intensive environments, there are two alternative configurations that may be used.
The first is where clients and any second-level internal name servers query a main name server, which
has enough memory to build a large cache. This approach minimizes the bandwidth used by external
name lookups. The second alternative is to set up second-level internal name servers to make queries
independently. In this configuration, none of the individual machines needs to have as much memory
or CPU power as in the first alternative, but this has the disadvantage of making many more external
queries, as none of the name servers share their cached data.

11

2.5. SUPPORTED OPERATING SYSTEMS CHAPTER 2. BIND RESOURCE REQUIREMENTS

2.5 Supported Operating Systems

ISC BIND 9 compiles and runs on a large number of Unix-like operating system and on NT-derived ver-
sions of Microsoft Windows such as Windows 2000 and Windows XP. For an up-to-date list of supported
systems, see the README file in the top level directory of the BIND 9 source distribution.

12

Chapter 3

Name Server Configuration

In this section we provide some suggested configurations along with guidelines for their use. We sug-
gest reasonable values for certain option settings.

3.1 Sample Configurations

3.1.1 A Caching-only Name Server

The following sample configuration is appropriate for a caching-only name server for use by clients
internal to a corporation. All queries from outside clients are refused using the allow-query option.
Alternatively, the same effect could be achieved using suitable firewall rules.

// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {
directory "/etc/namedb"; // Working directory
allow—-query { corpnets; };
}i
// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;

3.1.2 An Authoritative-only Name Server

This sample configuration is for an authoritative-only server that is the master server for "example.
com” and a slave for the subdomain “eng.example.com”.

options {

directory "/etc/namedb"; // Working directory
allow—query—-cache { none; }; // Do not allow access to cache
allow—query { any; }; // This 1is the default

recursion noj; // Do not provide recursive service

bi

// Provide a reverse mapping for the loopback address 127.0.0.1

13

3.3. NAME SERVER OPERATIONS CHAPTER 3. NAME SERVER CONFIGURATION

zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify no;
}i
// We are the master server for example.com
zone "example.com" {
type master;
file "example.com.db";
// IP addresses of slave servers allowed to transfer example.com
allow—-transfer {
192.168.4.14;
192.168.5.53;
}i
}i
// We are a slave server for eng.example.com
zone "eng.example.com" {
type slave;
file "eng.example.com.bk";
// IP address of eng.example.com master server
masters { 192.168.4.12; };
}i

3.2 Load Balancing

A primitive form of load balancing can be achieved in the DNS by using multiple records (such as
multiple A records) for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2 and 10.0.0.3,
a set of records such as the following means that clients will connect to each machine one third of the
time:

Name TTL CLASS TYPE Resource Record (RR) Data
WWW 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

When a resolver queries for these records, BIND will rotate them and respond to the query with the
records in a different order. In the example above, clients will randomly receive records in the order 1,
2,3;2,3,1;and 3, 1, 2. Most clients will use the first record returned and discard the rest.

For more detail on ordering responses, check the rrset-order substatement in the options statement, see
RRset Ordering.

3.3 Name Server Operations

3.3.1 Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative and monitoring tools available
to the system administrator for controlling and debugging the name server daemon.

14

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

3.3.1.1 Diagnostic Tools

The dig, host, and nslookup programs are all command line tools for manually querying name servers.
They differ in style and output format.

dig The domain information groper (dig) is the most versatile and complete of these lookup tools. It has
two modes: simple interactive mode for a single query, and batch mode which executes a query
for each in a list of several query lines. All query options are accessible from the command line.

Usage
dig [@server] domain [query-type] [query-class] [+query-option]
[-dig-option] [%comment]

The usual simple use of dig will take the form
dig @server domain query-type query-class

For more information and a list of available commands and options, see the dig man page.

host The host utility emphasizes simplicity and ease of use. By default, it converts between host names
and Internet addresses, but its functionality can be extended with the use of options.

Usage
host [-aCdlnrsTwv] [-c class] [-N ndots] [-t typel [-W timeout] [-R
retries] [-m flag] [—-4] [-6] hostname [server]

For more information and a list of available commands and options, see the host man page.

nslookup nslookup has two modes: interactive and non-interactive. Interactive mode allows the user
to query name servers for information about various hosts and domains or to print a list of hosts
in a domain. Non-interactive mode is used to print just the name and requested information for a
host or domain.

Usage

nslookup [-option...] [host—-to—-find | — [server]]

Interactive mode is entered when no arguments are given (the default name server will be used)
or when the first argument is a hyphen (’-") and the second argument is the host name or Internet
address of a name server.

Non-interactive mode is used when the name or Internet address of the host to be looked up is
given as the first argument. The optional second argument specifies the host name or address of a
name server.

Due to its arcane user interface and frequently inconsistent behavior, we do not recommend the
use of nslookup. Use dig instead.

3.3.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

named-checkconf The named-checkconf program checks the syntax of a named. conf file.

Usage
named-checkconf [-jvz] [-t directory] [filename]

named-checkzone The named-checkzone program checks a master file for syntax and consistency.

Usage

15

3.3. NAME SERVER OPERATIONS CHAPTER 3. NAME SERVER CONFIGURATION

named-checkzone [-djgvD] [-c class] [-o output] [-t directory] [-w
directory]l [-k (ignore|lwarn|fail)] [-n (ignore|warn|fail)]l [-W
(ignore\warn)] zone [filename]

named-compilezone Similar to named-checkzone, but it always dumps the zone content to a specified
file (typically in a different format).

rndc The remote name daemon control (rndc) program allows the system administrator to control the
operation of a name server. Since BIND 9.2, rndc supports all the commands of the BIND 8 ndc
utility except ndc start and ndc restart, which were also not supported in ndc’s channel mode. If
you run rndc without any options it will display a usage message as follows:

Usage
rndc [-c config] [-s server] [-p port] [-y key] command [command...]

The command is one of the following:

reload Reload configuration file and zones.

reload zone [class [view]] Reload the given zone.

refresh zone [class [view]] Schedule zone maintenance for the given zone.
retransfer zone [class [view]] Retransfer the given zone from the master.

freeze [zone [class [view]]] Suspend updates to a dynamic zone. If no zone is speci-
fied, then all zones are suspended. This allows manual edits to be made to a zone normally
updated by dynamic update. It also causes changes in the journal file to be synced into the
master and the journal file to be removed. All dynamic update attempts will be refused while
the zone is frozen.

thaw [zone [class [view]]] Enable updates to a frozen dynamic zone. If no zone is spec-
ified, then all frozen zones are enabled. This causes the server to reload the zone from disk,
and re-enables dynamic updates after the load has completed. After a zone is thawed, dy-
namic updates will no longer be refused.

notify zone [class [view]] Resend NOTIFY messages for the zone.

reconfig Reload the configuration file and load new zones, but do not reload existing zone files
even if they have changed. This is faster than a full reload when there is a large number of
zones because it avoids the need to examine the modification times of the zones files.

stats Write server statistics to the statistics file.

querylog Toggle query logging. Query logging can also be enabled by explicitly directing the
queries category to a channel in the logging section of named. conf or by specifying query-
log yes; in the options section of named. conf.

dumpdb [-all|-cache|-zone] [view ...] Dump theserver’s caches (default) and/or zones
to the dump file for the specified views. If no view is specified, all views are dumped.

stop [-p] Stop the server, making sure any recent changes made through dynamic update or
IXFR are first saved to the master files of the updated zones. If -p is specified named’s process

16

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

id is returned. This allows an external process to determine when named had completed
stopping.

halt [-p] Stop the server immediately. Recent changes made through dynamic update or IXFR
are not saved to the master files, but will be rolled forward from the journal files when the
server is restarted. If -p is specified named’s process id is returned. This allows an external
process to determine when named had completed halting.

trace Increment the servers debugging level by one.

trace level Sets the server’s debugging level to an explicit value.
notrace Sets the server’s debugging level to 0.

flush Flushes the server’s cache.

flushname name Flushes the given name from the server’s cache.

status Display status of the server. Note that the number of zones includes the internal bind/CH
zone and the default ./IN hint zone if there is not an explicit root zone configured.

recursing Dump the list of queries named is currently recursing on.

A configuration file is required, since all communication with the server is authenticated with
digital signatures that rely on a shared secret, and there is no way to provide that secret other than
with a configuration file. The default location for the rndc configuration fileis /etc/rndc.conf,
but an alternate location can be specified with the —c option. If the configuration file is not found,
rndc will also look in /etc/rndc.key (or whatever sysconfdir was defined when the BIND
build was configured). The rndc.key file is generated by running rndc-confgen -a as described
in Section 6.2.4.

The format of the configuration file is similar to that of named. conf, but limited to only four
statements, the options, key, server and include statements. These statements are what associate
the secret keys to the servers with which they are meant to be shared. The order of statements is
not significant.

The options statement has three clauses: default-server, default-key, and default-port. default-
server takes a host name or address argument and represents the server that will be contacted if no
-s option is provided on the command line. default-key takes the name of a key as its argument,
as defined by a key statement. default-port specifies the port to which rndc should connect if no
port is given on the command line or in a server statement.

The key statement defines a key to be used by rndc when authenticating with named. Its syntax
is identical to the key statement in named.conf. The keyword key is followed by a key name,
which must be a valid domain name, though it need not actually be hierarchical; thus, a string like
“rndc_key” is a valid name. The key statement has two clauses: algorithm and secret. While the
configuration parser will accept any string as the argument to algorithm, currently only the string
“hmac-md5” has any meaning. The secret is a base-64 encoded string as specified in RFC 3548.

The server statement associates a key defined using the key statement with a server. The keyword
server is followed by a host name or address. The server statement has two clauses: key and
port. The key clause specifies the name of the key to be used when communicating with this
server, and the port clause can be used to specify the port rndc should connect to on the server.

A sample minimal configuration file is as follows:

key rndc_key {

17

3.3. NAME SERVER OPERATIONS CHAPTER 3. NAME SERVER CONFIGURATION

algorithm "hmac-md5";
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1lhZGUgZm9yIGEgd29tYW4K";

bi

options {
default-server 127.0.0.1;
default-key rndc_key;

i

This file, if installed as /etc/rndc.conf, would allow the command:

$rndc reload

to connect to 127.0.0.1 port 953 and cause the name server to reload, if a name server on the local
machine were running with following controls statements:

controls {
inet 127.0.0.1 allow { localhost; } keys { rndc_key; };

}i

and it had an identical key statement for rndc_key.

Running the rndc-confgen program will conveniently create a rndc. conf file for you, and also
display the corresponding controls statement that you need to add to named. conf. Alternatively,
you can run rndc-confgen -a to set up a rndc. key file and not modify named. conf atall.

3.3.2 Signals

Certain UNIX signals cause the name server to take specific actions, as described in the following table.
These signals can be sent using the kill command.

SIGHUP Causes the server to read named. conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

18

Chapter 4

Advanced DNS Features

4.1 Notify

DNS NOTIFY is a mechanism that allows master servers to notify their slave servers of changes to a
zone’s data. In response to a NOTIFY from a master server, the slave will check to see that its version of
the zone is the current version and, if not, initiate a zone transfer.

For more information about DNS NOTIFY, see the description of the notify option in Section 6.2.16.1
and the description of the zone option also-notify in Section 6.2.16.7. The NOTIFY protocol is specified
in RFC 1996.

NOTE

As a slave zone can also be a master to other slaves, named, by default, sends
% NOTIFY messages for every zone it loads. Specifying notify master-only; will

cause named to only send NOTIFY for master zones that it loads.

4.2 Dynamic Update

Dynamic Update is a method for adding, replacing or deleting records in a master server by sending it
a special form of DNS messages. The format and meaning of these messages is specified in RFC 2136.

Dynamic update is enabled by including an allow-update or update-policy clause in the zone state-
ment.

Updating of secure zones (zones using DNSSEC) follows RFC 3007: RRSIG and NSEC records affected
by updates are automatically regenerated by the server using an online zone key. Update authorization
is based on transaction signatures and an explicit server policy.

4.21 The journal file

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file is auto-
matically created by the server when the first dynamic update takes place. The name of the journal file is
formed by appending the extension . jnl to the name of the corresponding zone file unless specifically
overridden. The journal file is in a binary format and should not be edited manually.

The server will also occasionally write (“dump”) the complete contents of the updated zone to its zone
file. This is not done immediately after each dynamic update, because that would be too slow when a

19

4.3. INCREMENTAL ZONE TRANSFERS (IXFR) CHAPTER 4. ADVANCED DNS FEATURES

large zone is updated frequently. Instead, the dump is delayed by up to 15 minutes, allowing additional
updates to take place.

When a server is restarted after a shutdown or crash, it will replay the journal file to incorporate into the
zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journalled in a similar way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guaranteed to
contain the most recent dynamic changes — those are only in the journal file. The only way to ensure
that the zone file of a dynamic zone is up to date is to run rndc stop.

If you have to make changes to a dynamic zone manually, the following procedure will work: Disable
dynamic updates to the zone using rndc freeze zone. This will also remove the zone’s . jn1 file and
update the master file. Edit the zone file. Run rndc thaw zone to reload the changed zone and re-enable
dynamic updates.

4.3 Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only changed data,
instead of having to transfer the entire zone. The IXFR protocol is specified in RFC 1995. See [Proposed
Standards].

When acting as a master, BIND 9 supports IXFR for those zones where the necessary change history
information is available. These include master zones maintained by dynamic update and slave zones
whose data was obtained by IXFR. For manually maintained master zones, and for slave zones obtained
by performing a full zone transfer (AXFR), IXFR is supported only if the option ixfr-from-differences is
set to yes.

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For more
information about disabling IXFR, see the description of the request-ixfr clause of the server statement.

44 Split DNS

Setting up different views, or visibility, of the DNS space to internal and external resolvers is usually
referred to as a Split DNS setup. There are several reasons an organization would want to set up its DNS
this way.

One common reason for setting up a DNS system this way is to hide ”internal” DNS information from
“external” clients on the Internet. There is some debate as to whether or not this is actually useful.
Internal DNS information leaks out in many ways (via email headers, for example) and most savvy
"attackers” can find the information they need using other means. However, since listing addresses
of internal servers that external clients cannot possibly reach can result in connection delays and other
annoyances, an organization may choose to use a Split DNS to present a consistent view of itself to the
outside world.

Another common reason for setting up a Split DNS system is to allow internal networks that are behind
filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the
Internet. Split DNS can also be used to allow mail from outside back in to the internal network.

4.4.1 Example split DNS setup

Let’s say a company named Example, Inc. (example.com) has several corporate sites that have an
internal network with reserved Internet Protocol (IP) space and an external demilitarized zone (DMZ),
or “outside” section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange mail
with people on the outside. The company also wants its internal resolvers to have access to certain
internal-only zones that are not available at all outside of the internal network.

20

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

In order to accomplish this, the company will set up two sets of name servers. One set will be on the
inside network (in the reserved IP space) and the other set will be on bastion hosts, which are “proxy”
hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for sitel.internal,
site2.internal, sitel.example.com, and site2.example.com, to the servers in the DMZ.
These internal servers will have complete sets of information for sitel.example.com, site2.example.
com, sitel.internal,and site2.internal.

To protect the sitel.internal and site2.internal domains, the internal name servers must be
configured to disallow all queries to these domains from any external hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the "public” version
of the sitel and site2.example.com zones. This could include things such as the host records for
public servers (www.example.comand ftp.example.com), and mail exchange (MX) records (a.mx .
example.comand b.mx.example.com).

In addition, the public sitel and site2.example.com zones should have special MX records that
contain wildcard (**’) records pointing to the bastion hosts. This is needed because external mail servers
do not have any other way of looking up how to deliver mail to those internal hosts. With the wildcard
records, the mail will be delivered to the bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:
* IN MX 10 externall.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts will need
to know how to deliver mail to internal hosts. In order for this to work properly, the resolvers on the
bastion hosts will need to be configured to point to the internal name servers for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for external host-
names will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only the internal
name servers for DNS queries. This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:
e Look up any hostnames in the sitel and site2.example.com zones.
e Look up any hostnames in the sitel.internal and site2.internal domains.
e Look up any hostnames on the Internet.
e Exchange mail with both internal and external people.
Hosts on the Internet will be able to:
e Look up any hostnames in the sitel and site2.example.com zones.
e Exchange mail with anyone in the sitel and site2.example.com zones.

Here is an example configuration for the setup we just described above. Note that this is only configu-
ration information; for information on how to configure your zone files, see Section 3.1.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };
options {

forward only;

forwarders { // forward to external servers
bastion-ips—-go-here;

21

4.4. SPLIT DNS

CHAPTER 4. ADVANCED DNS FEATURES

}i

allow-transfer { none; };
allow-query { internals; externals;
allow-recursion { internals; };

}i

zone "sitel.example.com" {
type master;
file "m/sitel.example.com";
forwarders { };

allow—-query { internals;

allow-transfer { internals; };
}i
zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow—query { internals;
allow—-transfer { internals; };

bi

zone "sitel.internal" {
type master;
file "m/sitel.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }
}i

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }
}i

External (bastion host) DNS server config:

acl internals { 172.16.72.0/24;

acl externals { bastion-ips—-go-here; };

options {

allow—-transfer { none; };
allow—query { any; };

allow-query-cache { internals;
allow-recursion { internals;

externals; };

externals; };

externals; }; //
externals; }; //

// sample allow-transfer (no one)

}; // restrict query access

// restrict recursion

// sample master zone

// do normal iterative

// resolution (do not forward)

// sample slave zone

192.168.1.0/24; };

// sample allow-transfer (no one)
// default query access
restrict cache access

restrict recursion

22

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

}i

zone "sitel.example.com" { // sample slave zone
type master;
file "m/sitel.foo.com";
allow-transfer { internals; externals; };

}i

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-transfer { internals; externals; }

}i
In the resolv.conf (or equivalent) on the bastion host(s):

search

nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.5 TSIG

This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction security in BIND. It
describes changes to the configuration file as well as what changes are required for different features,
including the process of creating transaction keys and using transaction signatures with BIND.

BIND primarily supports TSIG for server to server communication. This includes zone transfer, notify,
and recursive query messages. Resolvers based on newer versions of BIND 8 have limited support for
TSIG.

TSIG can also be useful for dynamic update. A primary server for a dynamic zone should control access
to the dynamic update service, but IP-based access control is insufficient. The cryptographic access
control provided by TSIG is far superior. The nsupdate program supports TSIG via the -k and -y
command line options or inline by use of the key.

451 Generate Shared Keys for Each Pair of Hosts

A shared secret is generated to be shared between host]l and host2. An arbitrary key name is chosen:
“host1-host2.”. The key name must be the same on both hosts.

4.5.1.1 Automatic Generation

The following command will generate a 128-bit (16 byte) HMAC-MDS5 key as described above. Longer
keys are better, but shorter keys are easier to read. Note that the maximum key length is 512 bits; keys
longer than that will be digested with MD5 to produce a 128-bit key.

dnssec-keygen —a hmac-md5 -b 128 -n HOST hostl-host2.

The key is in the file Khost1-host2.+157+00000.private. Nothing directly uses this file, but the
base-64 encoded string following “Key : ” can be extracted from the file and used as a shared secret:

Key: La/E5CJjG90+osljgla2jdA==

The string “La/E5CjG90+0s1jg0a2jdA==" can be used as the shared secret.

23

4.5. TSIG CHAPTER 4. ADVANCED DNS FEATURES

4.5.1.2 Manual Generation

The shared secret is simply a random sequence of bits, encoded in base-64. Most ASCII strings are valid
base-64 strings (assuming the length is a multiple of 4 and only valid characters are used), so the shared
secret can be manually generated.

Also, a known string can be run through mmencode or a similar program to generate base-64 encoded
data.

4.5.2 Copying the Shared Secret to Both Machines

This is beyond the scope of DNS. A secure transport mechanism should be used. This could be secure
FTP, ssh, telephone, etc.

4.5.3 Informing the Servers of the Key’s Existence

Imagine host1 and host 2 are both servers. The following is added to each server’s named. conf file:

key hostl-host2. ({

algorithm hmac-md5;

secret "La/E5CjG90+o0slijgla2jda==";
i

The algorithm, hmac-md5, is the only one supported by BIND. The secret is the one generated above.
Since this is a secret, it is recommended that either named. conf be non-world readable, or the key
directive be added to a non-world readable file that is included by named. conf.

At this point, the key is recognized. This means that if the server receives a message signed by this key,
it can verify the signature. If the signature is successfully verified, the response is signed by the same
key.

4.5.4 Instructing the Server to Use the Key

Since keys are shared between two hosts only, the server must be told when keys are to be used. The
following is added to the named. conf file for host1, if the IP address of host2 is 10.1.2.3:

server 10.1.2.3 {
keys { hostl-host2. ;};
}i

Multiple keys may be present, but only the first is used. This directive does not contain any secrets, so
it may be in a world-readable file.

If host1 sends a message that is a request to that address, the message will be signed with the specified
key. host1 will expect any responses to signed messages to be signed with the same key.

A similar statement must be present in host2’s configuration file (with host1’s address) for host2 to sign
request messages to host1.

4.5.5 TSIG Key Based Access Control

BIND allows IP addresses and ranges to be specified in ACL definitions and allow-{ query | transfer |
update } directives. This has been extended to allow TSIG keys also. The above key would be denoted
key hostl-host2.

24

CHAPTER 4. ADVANCED DNS FEATURES 4.6. TKEY

An example of an allow-update directive would be:
allow-update { key hostl-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key named "host1-host2.”.

You may want to read about the more powerful update-policy statement in Section 6.2.24.4.

4.5.6 Errors

The processing of TSIG signed messages can result in several errors. If a signed message is sent to a non-
TSIG aware server, a FORMERR (format error) will be returned, since the server will not understand the
record. This is a result of misconfiguration, since the server must be explicitly configured to send a TSIG
signed message to a specific server.

If a TSIG aware server receives a message signed by an unknown key, the response will be unsigned
with the TSIG extended error code set to BADKEY. If a TSIG aware server receives a message with a
signature that does not validate, the response will be unsigned with the TSIG extended error code set
to BADSIG. If a TSIG aware server receives a message with a time outside of the allowed range, the
response will be signed with the TSIG extended error code set to BADTIME, and the time values will
be adjusted so that the response can be successfully verified. In any of these cases, the message’s rcode
(response code) is set to NOTAUTH (not authenticated).

4.6 TKEY

TKEY is a mechanism for automatically generating a shared secret between two hosts. There are several
“modes” of TKEY that specify how the key is generated or assigned. BIND 9 implements only one of
these modes, the Diffie-Hellman key exchange. Both hosts are required to have a Diffie-Hellman KEY
record (although this record is not required to be present in a zone). The TKEY process must use signed
messages, signed either by TSIG or SIG(0). The result of TKEY is a shared secret that can be used to sign
messages with TSIG. TKEY can also be used to delete shared secrets that it had previously generated.

The TKEY process is initiated by a client or server by sending a signed TKEY query (including any
appropriate KEYs) to a TKEY-aware server. The server response, if it indicates success, will contain a
TKEY record and any appropriate keys. After this exchange, both participants have enough information
to determine the shared secret; the exact process depends on the TKEY mode. When using the Diffie-
Hellman TKEY mode, Diffie-Hellman keys are exchanged, and the shared secret is derived by both
participants.

4.7 SIG(0)

BIND 9 partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535 and RFC2931.
SIG(0) uses public/private keys to authenticate messages. Access control is performed in the same
manner as TSIG keys; privileges can be granted or denied based on the key name.

When a SIG(0) signed message is received, it will only be verified if the key is known and trusted by the
server; the server will not attempt to locate and/or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.

The only tool shipped with BIND 9 that generates SIG(0) signed messages is nsupdate.

25

4.8. DNSSEC CHAPTER 4. ADVANCED DNS FEATURES

4.8 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC-bis)
extensions, defined in RFC 4033, RFC 4034, and RFC 4035. This section describes the creation and use of
DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed. BIND 9
ships with several tools that are used in this process, which are explained in more detail below. In all
cases, the —h option prints a full list of parameters. Note that the DNSSEC tools require the keyset files
to be in the working directory or the directory specified by the —d option, and that the tools shipped
with BIND 9.2.x and earlier are not compatible with the current ones.

There must also be communication with the administrators of the parent and/or child zone to transmit
keys. A zone’s security status must be indicated by the parent zone for a DNSSEC capable resolver to
trust its data. This is done through the presence or absence of a DS record at the delegation point.

For other servers to trust data in this zone, they must either be statically configured with this zone’s
zone key or the zone key of another zone above this one in the DNS tree.

4.8.1 Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other records in the zone,
as well as the zone keys of any secure delegated zones. Zone keys must have the same name as the zone,
a name type of ZONE, and must be usable for authentication. It is recommended that zone keys use a
cryptographic algorithm designated as “mandatory to implement” by the IETF; currently the only one
is RSASHAT.

The following command will generate a 768-bit RSASHA1 key for the child.example zone:
dnssec-keygen —-a RSASHAl -b 768 -n ZONE child.example.

Two output files will be produced: Kchild.example.+005+12345.key and Kchild.example.+
005+12345.private (where 12345 is an example of a key tag). The key filenames contain the key
name (child.example.), algorithm (3 is DSA, 1 is RSAMDS5, 5 is RSASHALI, etc.), and the key tag
(12345 in this case). The private key (in the . private file) is used to generate signatures, and the public
key (in the . key file) is used for signature verification.

To generate another key with the same properties (but with a different key tag), repeat the above com-
mand.

The public keys should be inserted into the zone file by including the .key files using SINCLUDE
statements.

4.8.2 Signing the Zone

The dnssec-signzone program is used to sign a zone.

Any keyset files corresponding to secure subzones should be present. The zone signer will generate
NSEC and RRSIG records for the zone, as well as DS for the child zones if -d”’ is specified. If ' -d” is
not specified, then DS RRsets for the secure child zones need to be added manually.

The following command signs the zone, assuming it is in a file called zone.child.example. By
default, all zone keys which have an available private key are used to generate signatures.

dnssec-signzone -o child.example zone.child.example

One output fileis produced: zone.child.example. signed. This file should be referenced by named.
conf as the input file for the zone.

26

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

dnssec-signzone will also produce a keyset and dsset files and optionally a dlvset file. These are used
to provide the parent zone administrators with the DNSKEYs (or their corresponding DS records) that
are the secure entry point to the zone.

4.8.3 Configuring Servers

To enable named to respond appropriately to DNS requests from DNSSEC aware clients, dnssec-enable
must be set to yes.

To enable named to validate answers from other servers both dnssec-enable and dnssec-validation
must be set and some trusted-keys must be configured into named. conft.

trusted-keys are copies of DNSKEY RRs for zones that are used to form the first link in the cryptographic
chain of trust. All keys listed in trusted-keys (and corresponding zones) are deemed to exist and only
the listed keys will be used to validated the DNSKEY RRset that they are from.

trusted-keys are described in more detail later in this document.

Unlike BIND 8, BIND 9 does not verify signatures on load, so zone keys for authoritative zones do not
need to be specified in the configuration file.

After DNSSEC gets established, a typical DNSSEC configuration will look something like the following.
It has a one or more public keys for the root. This allows answers from outside the organization to be
validated. It will also have several keys for parts of the namespace the organization controls. These are
here to ensure that named is immune to compromises in the DNSSEC components of the security of
parent zones.

trusted-keys {

/* Root Key =/

"." 257 3 3 "BNY4wrWMInCfJ+CXd0rVXyYmobt7sEEfK3clRbGaTwSIxrGkxJWoZu6I7PzJu/
E9gx4UClzGAH1XKdE4zYIpRhaBKnvcC2U9ImZhkdUpdlVso/HAdJNe8LmMlnzY3
zy2Xy4k1WOADTPzSv9eamj8V18PHGjBLavVtYvk/1n5ZApjYghf+6fElrmLkdaz
MQ20CnACR817DF4BBa7UR/beDHyp5iWTXWS16XmoJLbG9Scqgc7170KDglvXR3M
/1UUVRbkeglIPJSidmK3ZyCl1h4XSKbje/45SKucHgnwU5jefMtg66gKodQj+M
1A21AfUVe7u99WzTLzY3glxDhxYQQ20FQ97S+LKUTpQcg27R7AT3/V5hROxScT
Nagwcz4jYgzZD2£QdgxbcDTC1UOCRBAiieyLMNzXG3";

/+ Key for our organization’s forward zone x/

example.com. 257 3 5 "AwWEAAaxPMcR2x0HbQV4AWeZB6oEDX+r0QM65KbhT jriWlZaARmPhEZZe
3Y9ifgEuq7vZ/zGZUdEGNWy+JZzus01lUptwgjGwhUS1558Hb4JKUbb
OTcM8pwX1jO0Ei1iX30DFVmjHO444gLkBO UKUf/mC7HvEwYH/Be22GnC
1rinKJplOg4ywzO9WglMk7 jbfW33gUKvirTHr25GL7STQUzBb5Usxt
81gnyTUHs1t3JwCY5hKZ6CgFxmAVZP201igTixin/1LcrgX/KMEGdA/b
iuvF4gJdCyduieHukuY3H4XMAcCR+xia2 nIUPvm/oyWR8BW/hWdzOvn
SCTh1Hf3x1Y1eDbt/0l0OTQOSA0=";

/* Key for our reverse zone. x*/

2.0.192.IN-ADDRPA.NET. 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwcxOdNax071L18QgZnQQQA
VVr+iLhGTnNGp3HoWQLUIzKrJVZ3zggy3WwNT6kZo6cO
tszYgbtvchmgQC8CzKojM/W161i6MG/ea £GU3sia0dS0
yOI6BgPsw+YZdz1YMalJGf4M4dyoKIhzdZyQ2bYQrjyQ
4LB01C7a0nsMyYKHHYeRv PxjIQXmdggOJGg+vsevG06
zZW+1xgYJh9rCIfnmlGX/KMgxLPG2vXTD/RnLX+D3T3UL
THIYHJhAZDS5L59VVv jSPsZJHeDCUyWYrvPZesZDIRvhDD
52SKvbheeTJUm6EhkzytNN2SN96QRk8J/1iI81b";

}i

options {

27

4.9. IPV6 SUPPORT IN BIND 9 CHAPTER 4. ADVANCED DNS FEATURES

dnssec—-enable yes;
dnssec-validation yes;

bi

NOTE

None of the keys listed in this example are valid. In particular, the root key is not
valid.

4.9 IPv6 Support in BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name to address and address to name lookups.
It will also use IPv6 addresses to make queries when running on an IPv6 capable system.

For forward lookups, BIND 9 supports only AAAA records. RFC 3363 deprecated the use of A6 records,
and client-side support for A6 records was accordingly removed from BIND 9. However, authoritative
BIND 9 name servers still load zone files containing A6 records correctly, answer queries for A6 records,
and accept zone transfer for a zone containing A6 records.

For IPv6 reverse lookups, BIND 9 supports the traditional “nibble” format used in the ip6.arpa domain,
as well as the older, deprecated ip6.int domain. Older versions of BIND 9 supported the ”binary label”
(also known as “bitstring”) format, but support of binary labels has been completely removed per REC
3363. Many applications in BIND 9 do not understand the binary label format at all any more, and will
return an error if given. In particular, an authoritative BIND 9 name server will not load a zone file
containing binary labels.

For an overview of the format and structure of IPv6 addresses, see Section A.2.1.

4.9.1 Address Lookups Using AAAA Records

The IPv6 AAAA record is a parallel to the IPv4 A record, and, unlike the deprecated A6 record, specifies
the entire IPv6 address in a single record. For example,

SORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

Use of IPv4-in-IPv6 mapped addresses is not recommended. If a host has an IPv4 address, use an A
record, nota AAAA, with : : ££££:192.168.42.1 as the address.

4.9.2 Address to Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are simply reversed, just as in
IPv4, and ip6.arpa. is appended to the resulting name. For example, the following would provide
reverse name lookup for a host with address 2001 :db8: : 1.

SORIGIN 0.0.0.0.0.0.0.0.8.0.d.0.1.0.0.2.1ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR host.example.com.

28

Chapter 5

The BIND 9 Lightweight Resolver

5.1 The Lightweight Resolver Library

Traditionally applications have been linked with a stub resolver library that sends recursive DNS queries
to a local caching name server.

IPv6 once introduced new complexity into the resolution process, such as following A6 chains and
DNAME records, and simultaneous lookup of IPv4 and IPv6 addresses. Though most of the complexity
was then removed, these are hard or impossible to implement in a traditional stub resolver.

BIND 9 therefore can also provide resolution services to local clients using a combination of a lightweight
resolver library and a resolver daemon process running on the local host. These communicate using a
simple UDP-based protocol, the “lightweight resolver protocol” that is distinct from and simpler than
the full DNS protocol.

5.2 Running a Resolver Daemon

To use the lightweight resolver interface, the system must run the resolver daemon lwresd or a local
name server configured with a Iwres statement.

By default, applications using the lightweight resolver library will make UDP requests to the IPv4 loop-
back address (127.0.0.1) on port 921. The address can be overridden by Iwserverlinesin /etc/resolv.
conf.

The daemon currently only looks in the DNS, but in the future it may use other sources such as /etc/
hosts, NIS, etc.

The lwresd daemon is essentially a caching-only name server that responds to requests using the lightweight
resolver protocol rather than the DNS protocol. Because it needs to run on each host, it is designed to
require no or minimal configuration. Unless configured otherwise, it uses the name servers listed on
nameserver lines in /etc/resolv.conf as forwarders, but is also capable of doing the resolution
autonomously if none are specified.

The Iwresd daemon may also be configured with a named. conf style configuration file, in /etc/
lwresd.conf by default. A name server may also be configured to act as a lightweight resolver dae-
mon using the Iwres statement in named. conft.

29

Chapter 6

BIND 9 Configuration Reference

BIND 9 configuration is broadly similar to BIND 8; however, there are a few new areas of configuration,
such as views. BIND 8 configuration files should work with few alterations in BIND 9, although more
complex configurations should be reviewed to check if they can be more efficiently implemented using
the new features found in BIND 9.

BIND 4 configuration files can be converted to the new format using the shell script contrib/named-
bootconf/named-bootconf. sh.

6.1 Configuration File Elements

Following is a list of elements used throughout the BIND configuration file documentation:

acl_name
address_match_list

masters_list

domain_name
dotted_decimal
ip4d_addr

ip6_addr

ip_addr

The name of an addressmatch_list as defined by the acl
statement.

A list of one or more ip_addr, ipprefix, key_id, or
acl_name elements, see Section 6.1.1.

A named list of one or more ip_addr with optional key_id
and/or ip_port. A masters_list may include other
masters_lists.

A quoted string which will be used as a DNS name, for exam-
ple “my.test.domain”.

One to four integers valued 0 through 255 separated by dots
(“.”), such as 123, 45.67 or 89.123.45.67.

An IPv4 address with exactly four elements in
dotted_decimal notation.

An IPv6 address, such as 2001:db8::1234. IPv6 scoped ad-
dresses that have ambiguity on their scope zones must be
disambiguated by an appropriate zone ID with the percent
character ("%’) as delimiter. It is strongly recommended to
use string zone names rather than numeric identifiers, in or-
der to be robust against system configuration changes. How-
ever, since there is no standard mapping for such names and
identifier values, currently only interface names as link iden-
tifiers are supported, assuming one-to-one mapping between
interfaces and links. For example, a link-local address fe80::1
on the link attached to the interface ne0 can be specified as
fe80::1%ne0. Note that on most systems link-local addresses
always have the ambiguity, and need to be disambiguated.
An ip4_addr or ip6_addr.

31

6.1. CONFIGURATION FILE ELEMENTS CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

ip_port AnIP port number. The number is limited to 0 through 65535,
with values below 1024 typically restricted to use by processes
running as root. In some cases, an asterisk (**') character can
be used as a placeholder to select a random high-numbered
port.

ip_prefix An IP network specified as an ip_addr, followed by a slash
("/’) and then the number of bits in the netmask. Trailing
zeros in a ip_addr may omitted. For example, 127/8 is the
network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0/28 is net-
work 1.2.3.0 with netmask 255.255.255.240.

key_id A domain_name representing the name of a shared key, to be
used for transaction security.

key_list A list of one or more key_ids, separated by semicolons and
ending with a semicolon.

number A non-negative 32-bit integer (i.e., a number between 0 and

4294967295, inclusive). Its acceptable value might further be
limited by the context in which it is used.

path_name A quoted string which will be used as a pathname, such as
zones/master/my.test.domain.
size_spec A number, the word unlimited, or the word default.

An unlimited size_spec requests unlimited use, or the
maximum available amount. A default size_spec uses
the limit that was in force when the server was started.

A number can optionally be followed by a scaling factor: K
or k for kilobytes, M or m for megabytes, and G or g for gi-
gabytes, which scale by 1024, 1024*1024, and 1024*1024*1024
respectively.

The value must be representable as a 64-bit unsigned integer
(0 to 18446744073709551615, inclusive). Using unlimited is
the best way to safely set a really large number.

yes_or_no Either yes or no. The words true and false are also ac-
cepted, as are the numbers 1 and 0.
dialup-option One of yes, no, notify, notify-passive, refresh

or passive. When used in a zone, notify-passive,
refresh, and passive are restricted to slave and stub zones.

6.1.1 Address Match Lists
6.1.1.1 Syntax

address_match_list = address_match_list_element ;
[address_match_list_element; ...]
address_match_list_element = [!] (ip_address [/length] |
key key_id | acl_name | { address_match_list })

6.1.1.2 Definition and Usage

Address match lists are primarily used to determine access control for various server operations. They
are also used in the listen-on and sortlist statements. The elements which constitute an address match
list can be any of the following:

e an IP address (IPv4 or IPv6)

e an IP prefix (in ’/’ notation)

32

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.1. CONFIGURATION FILE ELEMENTS

e a key ID, as defined by the key statement
e the name of an address match list defined with the acl statement

e a nested address match list enclosed in braces

v

Elements can be negated with a leading exclamation mark ("), and the match list names “any”, “none”,
“localhost”, and “localnets” are predefined. More information on those names can be found in the
description of the acl statement.

ay

The addition of the key clause made the name of this syntactic element something of a misnomer, since
security keys can be used to validate access without regard to a host or network address. Nonetheless,
the term “address match list” is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list, the list is traversed in order
until an element matches. The interpretation of a match depends on whether the list is being used for
access control, defining listen-on ports, or in a sortlist, and whether the element was negated.

When used as an access control list, a non-negated match allows access and a negated match denies
access. If there is no match, access is denied. The clauses allow-notify, allow-query, allow-query-
cache, allow-transfer, allow-update, allow-update-forwarding, and blackhole all use address match
lists. Similarly, the listen-on option will cause the server to not accept queries on any of the machine’s
addresses which do not match the list.

Because of the first-match aspect of the algorithm, an element that defines a subset of another element in
the list should come before the broader element, regardless of whether either is negated. For example,
in 1.2.3/24; ! 1.2.3.13; the 1.2.3.13 element is completely useless because the algorithm will match any
lookup for 1.2.3.13 to the 1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by having 1.2.3.13
blocked by the negation but all other 1.2.3.* hosts fall through.

6.1.2 Comment Syntax

The BIND 9 comment syntax allows for comments to appear anywhere that whitespace may appear in
a BIND configuration file. To appeal to programmers of all kinds, they can be written in the C, C++, or
shell/perl style.

6.1.2.1 Syntax

/* This 1is a BIND comment as in C x/
// This is a BIND comment as in C++

This is a BIND comment as in common UNIX shells and perl

6.1.2.2 Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star, slash). Because
they are completely delimited with these characters, they can be used to comment only a portion of a
line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because the entire comment
ends with the first */:

/+ This is the start of a comment.
This is still part of the comment.

/+ This is an incorrect attempt at nesting a comment. =/
This is no longer in any comment. =/

33

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

C++-style comments start with the two characters // (slash, slash) and continue to the end of the phys-
ical line. They cannot be continued across multiple physical lines; to have one logical comment span
multiple lines, each line must use the // pair.

For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style (or perl-style, if you prefer) comments start with the character # (number sign) and continue
to the end of the physical line, as in C++ comments.

For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING

You cannot use the semicolon (;’) character to start a comment such as you
would in a zone file. The semicolon indicates the end of a configuration state-
ment.

6.2 Configuration File Grammar

A BIND 9 configuration consists of statements and comments. Statements end with a semicolon. State-
ments and comments are the only elements that can appear without enclosing braces. Many statements
contain a block of sub-statements, which are also terminated with a semicolon.

The following statements are supported:

acl defines a named IP address matching list, for access control
and other uses.

controls declares control channels to be used by the rndc utility.

include includes a file.

key specifies key information for use in authentication and autho-
rization using TSIG.

logging specifies what the server logs, and where the log messages are
sent.

Iwres configures named to also act as a light-weight resolver dae-
mon (Ilwresd).

masters defines a named masters list for inclusion in stub and slave
zone masters clauses.

options controls global server configuration options and sets defaults
for other statements.

server sets certain configuration options on a per-server basis.

trusted-keys defines trusted DNSSEC keys.

view defines a view.

zone defines a zone.

The logging and options statements may only occur once per configuration.

34

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

6.2.1 acl Statement Grammar

acl acl—-name {
address_match_list

}i

6.2.2 acl Statement Definition and Usage
The acl statement assigns a symbolic name to an address match list. It gets its name from a primary use
of address match lists: Access Control Lists (ACLs).

Note that an address match list’s name must be defined with acl before it can be used elsewhere; no
forward references are allowed.

The following ACLs are built-in:

any Matches all hosts.

none Matches no hosts.

localhost Matches the IPv4 and IPv6 addresses of all network interfaces on
the system.

localnets Matches any host on an IPv4 or IPv6 network for which the system

has an interface. Some systems do not provide a way to determine
the prefix lengths of local IPv6 addresses. In such a case, localnets
only matches the local IPv6 addresses, just like localhost.

6.2.3 controls Statement Grammar

controls {
[inet (ip_addr | *) [port ip_port] allow { address_match_list }
keys { key_list };]

[inet ...;]
[unix path perm number owner number group number keys { key_list }; 1]
[unix ...;]

}i

6.2.4 controls Statement Definition and Usage

The controls statement declares control channels to be used by system administrators to control the
operation of the name server. These control channels are used by the rndc utility to send commands to
and retrieve non-DNS results from a name server.

An inet control channel is a TCP socket listening at the specified ip_port on the specified ip_addr, which
can be an IPv4 or IPv6 address. An ip_addr of « (asterisk) is interpreted as the IPv4 wildcard address;
connections will be accepted on any of the system’s IPv4 addresses. To listen on the IPv6 wildcard
address, use an ip_addr of : :. If you will only use rndc on the local host, using the loopback address
(127.0.0.1 or : :1) is recommended for maximum security.

Vi

If no port is specified, port 953 is used. The asterisk ”+” cannot be used for ip_port.

The ability to issue commands over the control channel is restricted by the allow and keys clauses.
Connections to the control channel are permitted based on the address_match _list. This is for simple IP
address based filtering only; any key_id elements of the address_match _list are ignored.

35

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

A unix control channel is a UNIX domain socket listening at the specified path in the file system. Access
to the socket is specified by the perm, owner and group clauses. Note on some platforms (SunOS and
Solaris) the permissions (perm) are applied to the parent directory as the permissions on the socket itself
are ignored.

The primary authorization mechanism of the command channel is the key_list, which contains a list of
key_ids. Each key_id in the key_list is authorized to execute commands over the control channel. See
[Remote Name Daemon Control application] in Section 3.3.1.2) for information about configuring keys
in rndc.

If no controls statement is present, named will set up a default control channel listening on the loopback
address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls statement is
present but does not have a keys clause, named will attempt to load the command channel key from the
file rndc.key in /etc (or whatever sysconfdir was specified as when BIND was built). To create a
rndc.key file, run rndec-confgen -a.

The rndc. key feature was created to ease the transition of systems from BIND 8, which did not have
digital signatures on its command channel messages and thus did not have a keys clause. It makes it
possible to use an existing BIND 8 configuration file in BIND 9 unchanged, and still have rndc work the
same way ndc worked in BIND 8, simply by executing the command rndc-confgen -a after BIND 9
is installed.

Since the rndc. key feature is only intended to allow the backward-compatible usage of BIND 8 con-
figuration files, this feature does not have a high degree of configurability. You cannot easily change the
key name or the size of the secret, so you should make a rndc. conf with your own key if you wish to
change those things. The rndc.key file also has its permissions set such that only the owner of the file
(the user that named is running as) can access it. If you desire greater flexibility in allowing other users
to access rndc commands, then you need to create a rndc. conf file and make it group readable by a
group that contains the users who should have access.

To disable the command channel, use an empty controls statement: controls { };.

6.2.5 include Statement Grammar

include filename;

6.2.6 include Statement Definition and Usage

The include statement inserts the specified file at the point where the include statement is encountered.
The include statement facilitates the administration of configuration files by permitting the reading or
writing of some things but not others. For example, the statement could include private keys that are
readable only by the name server.

6.2.7 key Statement Grammar

key key_id {
algorithm string;
secret string;

bi

6.2.8 key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG (see Section 4.5) or the command
channel (see Section 6.2.4).

36

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

The key statement can occur at the top level of the configuration file or inside a view statement. Keys de-
fined in top-level key statements can be used in all views. Keys intended for use in a controls statement
(see Section 6.2.4) must be defined at the top level.

The key_id, also known as the key name, is a domain name uniquely identifying the key. It can be used
in a server statement to cause requests sent to that server to be signed with this key, or in address match
lists to verify that incoming requests have been signed with a key matching this name, algorithm, and
secret.

The algorithm_id is a string that specifies a security/authentication algorithm. Named supports
hmac-md5, hmac—shal, hmac-sha224, hmac-sha256, hmac—-sha384 and hmac—-sha512 TSIG au-
thentication. Truncated hashes are supported by appending the minimum number of required bits pre-
ceded by a dash, e.g. hmac-shal-80. The secret_stringis the secret to be used by the algorithm,
and is treated as a base-64 encoded string.

6.2.9 logging Statement Grammar

logging {
[channel channel_name {
(file path name
[versions (number | unlimited)]
[size size spec]
| syslog syslog_facility

| stderr

| null);
[severity (critical | error warning | notice |
info | debug [level] | dynamic);]

[print-category yes or no;]
[print-severity yes or no;]
[print-time yes or no;]
biol
[category category_name {
channel_name ; [channel_name ; ...]

il

6.2.10 logging Statement Definition and Usage

The logging statement configures a wide variety of logging options for the name server. Its channel
phrase associates output methods, format options and severity levels with a name that can then be used
with the category phrase to select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are wanted. If there is
no logging statement, the logging configuration will be:

logging {
category default { default_syslog; default_debug; };
category unmatched { null; };

bi

In BIND 9, the logging configuration is only established when the entire configuration file has been
parsed. In BIND 8, it was established as soon as the logging statement was parsed. When the server
is starting up, all logging messages regarding syntax errors in the configuration file go to the default
channels, or to standard error if the “~g” option was specified.

37

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.10.1 The channel Phrase

All log output goes to one or more channels; you can make as many of them as you want.

Every channel definition must include a destination clause that says whether messages selected for the
channel go to a file, to a particular syslog facility, to the standard error stream, or are discarded. It can
optionally also limit the message severity level that will be accepted by the channel (the default is info),
and whether to include a named-generated time stamp, the category name and/or severity level (the
default is not to include any).

The null destination clause causes all messages sent to the channel to be discarded; in that case, other
options for the channel are meaning]less.

The file destination clause directs the channel to a disk file. It can include limitations both on how
large the file is allowed to become, and how many versions of the file will be saved each time the file is
opened.

If you use the versions log file option, then named will retain that many backup versions of the file
by renaming them when opening. For example, if you choose to keep three old versions of the file
lamers. log, then just before it is opened lamers.log.1 is renamed to lamers.log.2, lamers.
log.0 is renamed to lamers.log.1l, and lamers. log is renamed to lamers.log.0. You can say
versions unlimited to not limit the number of versions. If a size option is associated with the log file,
then renaming is only done when the file being opened exceeds the indicated size. No backup versions
are kept by default; any existing log file is simply appended.

The size option for files is used to limit log growth. If the file ever exceeds the size, then named will
stop writing to the file unless it has a versions option associated with it. If backup versions are kept, the
files are rolled as described above and a new one begun. If there is no versions option, no more data
will be written to the log until some out-of-band mechanism removes or truncates the log to less than
the maximum size. The default behavior is not to limit the size of the file.

Example usage of the size and versions options:

channel an_example_channel {
file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;

}i

The syslog destination clause directs the channel to the system log. Its argument is a syslog facility as
described in the syslog man page. Known facilities are kern, user, mail, daemon, auth, syslog, lpr,
news, uucp, cron, authpriv, ftp, local0, locall, local2, local3, local4, local5, local6 and local7, however
not all facilities are supported on all operating systems. How syslog will handle messages sent to this
facility is described in the syslog.conf man page. If you have a system which uses a very old version of
syslog that only uses two arguments to the openlog() function, then this clause is silently ignored.

The severity clause works like syslog’s “priorities”, except that they can also be used if you are writing
straight to a file rather than using syslog. Messages which are not at least of the severity level given will
not be selected for the channel; messages of higher severity levels will be accepted.

If you are using syslog, then the syslog.conf priorities will also determine what eventually passes
through. For example, defining a channel facility and severity as daemon and debug but only log-
ging daemon.warning via syslog.conf will cause messages of severity info and notice to be dropped.
If the situation were reversed, with named writing messages of only warning or higher, then syslogd
would print all messages it received from the channel.

The stderr destination clause directs the channel to the server’s standard error stream. This is intended
for use when the server is running as a foreground process, for example when debugging a configura-
tion.

The server can supply extensive debugging information when it is in debugging mode. If the server’s
global debug level is greater than zero, then debugging mode will be active. The global debug level is
set either by starting the named server with the -d flag followed by a positive integer, or by running

38

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

rndc trace. The global debug level can be set to zero, and debugging mode turned off, by running rndc
notrace. All debugging messages in the server have a debug level, and higher debug levels give more
detailed output. Channels that specify a specific debug severity, for example:

channel specific_debug_level {
file "foo";
severity debug 3;

bi

will get debugging output of level 3 or less any time the server is in debugging mode, regardless of
the global debugging level. Channels with dynamic severity use the server’s global debug level to
determine what messages to print.

If print-time has been turned on, then the date and time will be logged. print-time may be specified for
a syslog channel, but is usually pointless since syslog also prints the date and time. If print-category is
requested, then the category of the message will be logged as well. Finally, if print-severity is on, then
the severity level of the message will be logged. The print- options may be used in any combination,
and will always be printed in the following order: time, category, severity. Here is an example where all
three print- options are on:

28-Feb-2000 15:05:32.863 general: notice: running

There are four predefined channels that are used for named’s default logging as follows. How they are
used is described in Section 6.2.10.2.

channel default_syslog {

syslog daemon; // send to syslog’s daemon
// facility
severity info; // only send priority info

// and higher
}i

channel default_debug ({
file "named.run"; // write to named.run in
// the working directory
// Note: stderr is used instead
// of "named.run"
// 1if the server is started
// with the ’'-f’ option.
severity dynamic; // log at the server’s
// current debug level
}i

channel default_stderr {
stderr; // writes to stderr
severity info; // only send priority info
// and higher
}i

channel null {
null; // toss anything sent to
// this channel

bi

The default_debug channel has the special property that it only produces output when the server’s
debug level is nonzero. It normally writes to a file called named. run in the server’s working directory.

For security reasons, when the ”-u” command line option is used, the named. run file is created only
after named has changed to the new UID, and any debug output generated while named is starting up
and still running as root is discarded. If you need to capture this output, you must run the server with
the ”-g” option and redirect standard error to a file.

39

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in channels directly,
but you can modify the default logging by pointing categories at channels you have defined.

6.2.10.2 The category Phrase

There are many categories, so you can send the logs you want to see wherever you want, without
seeing logs you don’t want. If you don’t specify a list of channels for a category, then log messages in
that category will be sent to the default category instead. If you don’t specify a default category, the
following ”default default” is used:

category default { default_syslog; default_debug; };

As an example, let’s say you want to log security events to a file, but you also want keep the default
logging behavior. You’'d specify the following:

channel my_security_channel {
file "my_security_file";
severity info;

}i

category security {
my_security_channel;
default_syslog;
default_debug;

}i

To discard all messages in a category, specify the null channel:

category xfer-out { null; };
category notify { null; };

Following are the available categories and brief descriptions of the types of log information they contain.
More categories may be added in future BIND releases.

default The default category defines the logging options for
those categories where no specific configuration has
been defined.

general The catch-all. Many things still aren’t classified into cat-
egories, and they all end up here.

database Messages relating to the databases used internally by
the name server to store zone and cache data.
security Approval and denial of requests.

config Configuration file parsing and processing.

resolver DNS resolution, such as the recursive lookups per-
formed on behalf of clients by a caching name server.

xfer-in Zone transfers the server is receiving.

xfer-out Zone transfers the server is sending.

notify The NOTIFY protocol.

client Processing of client requests.

unmatched Messages that named was unable to determine the class
of or for which there was no matching view. A one
line summary is also logged to the client category. This
category is best sent to a file or stderr, by default it is
sent to the null channel.

network Network operations.

update Dynamic updates.

update-security

Approval and denial of update requests.

40

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

queries Specify where queries should be logged to.
At startup, specifying the category queries will also
enable query logging unless querylog option has been
specified.
The query log entry reports the client’s IP address and
port number, and the query name, class and type. It
also reports whether the Recursion Desired flag was set
(+if set, - if not set), EDNS was in use (E) or if the query
was signed (S).
client 127.0.0.1#62536: query:
www.example.com IN AAAA +SE
client ::1#62537: query:
www.example.net IN AAAA -SE

dispatch Dispatching of incoming packets to the server modules
where they are to be processed.

dnssec DNSSEC and TSIG protocol processing.

lame-servers Lame servers. These are misconfigurations in remote

servers, discovered by BIND 9 when trying to query
those servers during resolution.

delegation-only Delegation only. Logs queries that have have been
forced to NXDOMAIN as the result of a delegation-
only zone or a delegation-only in a hint or stub zone
declaration.

6.2.11 Iwres Statement Grammar

This is the grammar of the Iwres statement in the named. conf file:

lwres {
[listen-on { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...]
[view view_name;]
[search { domain_name ; [domain_name ; ...] }; 1
[ndots number;]
i

6.2.12 lwres Statement Definition and Usage

The Iwres statement configures the name server to also act as a lightweight resolver server. (See Sec-
tion 5.2.) There may be multiple lwres statements configuring lightweight resolver servers with different
properties.

The listen-on statement specifies a list of addresses (and ports) that this instance of a lightweight re-
solver daemon should accept requests on. If no port is specified, port 921 is used. If this statement is
omitted, requests will be accepted on 127.0.0.1, port 921.

The view statement binds this instance of a lightweight resolver daemon to a view in the DNS names-
pace, so that the response will be constructed in the same manner as a normal DNS query matching this
view. If this statement is omitted, the default view is used, and if there is no default view, an error is
triggered.

The search statement is equivalent to the search statement in /etc/resolv.conf. It provides a list of
domains which are appended to relative names in queries.

The ndots statement is equivalent to the ndots statement in /etc/resolv.conf. It indicates the min-
imum number of dots in a relative domain name that should result in an exact match lookup before
search path elements are appended.

41

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.13 masters Statement Grammar

masters name [port ip_port] { (masters_list | ip_addr [port ip_port] [key key]

6.2.14 masters Statement Definition and Usage

masters lists allow for a common set of masters to be easily used by multiple stub and slave zones.

6.2.15 options Statement Grammar

This is the grammar of the options statement in the named. conf file:

options {
[version version_string;]
[hostname hostname_string;]
[server-id server_id_string; 1
[directory path_name;]
[key-directory path_name;]
[named-xfer path_name;]
[tkey-domain domainname;]
[tkey-dhkey key_name key_tag;]
[cache-file path_name;]
[dump—-file path_name;]
[memstatistics—-file path_name;]
[pid-file path_name;]
[recursing-file path_name;]
[statistics—-file path_name;]
[zone-statistics yes_or_no;]
[auth-nxdomain yes_or_no;]
[deallocate-on—-exit yes_or_no;]
[dialup dialup_option;]
[fake—-iquery yes_or_no;]
[fetch—-glue yes_or_no;]
[flush-zones-on-shutdown yes_or_no;]
[has-old-clients yes_or_no;]
[host-statistics yes_or_no;]
[host-statistics—-max number;]
[minimal-responses yes_or_no; |
[multiple-cnames yes_or_no; |
[notify yes_or_no | explicit | master-only;]
[recursion yes_or_no;]
[rfc2308-typel yes_or_no;]
[use-id-pool yes_or_no;]
[maintain-ixfr-base yes_or_no;]
[dnssec-enable yes_or_no;]
[dnssec-validation yes_or_no; |
[dnssec-lookaside domain trust-anchor domain;]
[dnssec-must-be-secure domain yes_or_no;]
[dnssec—accept-expired yes_or_no;]
[forward (only | first);]
[forwarders { [ip_addr [port ip_port] ; ... 1 }; 1]
[dual-stack-servers [port ip_port] {
(domain_name [port ip_port] |
ip_addr [port ip_port]) ;
biol

42

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

[check—names (master | slave | response)
(warn | fail | ignore);]
check-mx (warn | fail | ignore);]

check-wildcard yes_or_no;]

check-integrity yes_or_no;]

check-mx-cname (warn | fail | ignore);]
check-srv-cname (warn | fail | ignore); 1]
check-sibling yes_or_no;]

allow-notify { address_match_list };]
allow-query { address_match_list };]
allow-query-cache { address_match_list };]
allow-transfer { address_match_1list };]
allow—-recursion { address_match_list };]
allow-update { address_match_list }; 1]
allow-update-forwarding { address_match_list };]
update—-check-ksk yes_or_no;]
allow-v6-synthesis { address_match_list };]
blackhole { address_match_1list };]
avoid-v4d-udp-ports { port_list };]
avoid-vé6-udp-ports { port_list };]

listen-on [port ip_port] { address_match_list };]
listen-on-v6 [port ip_port] { address_match_list };]
query-source ((ip4_addr | =)

[port (ip_port | *) 1 |
[address (ip4_addr | =)]
[port (ip_port | =) 1) ; 1

[query-source-v6 ((ip6_addr | *)

[port (ip_port | ») 1 |

[address (ip6_addr | =)]

[port (ip_port | =) 1) ; 1
max—-transfer—-time—-in number;]
max-transfer—-time-out number;]
max-transfer—-idle—-in number;]
max—-transfer—-idle-out number;]
tcp-clients number;]
recursive-clients number;]
serial-query-rate number;]
serial-queries number;]
tcp-listen—-queue number;]
transfer—-format (one—-answer | many-answers);]
transfers—in number;]
transfers—-out number;]
transfers—-per—-ns number;]

transfer-source (ip4_addr | =) [port ip_port] ; 1
transfer—-source-v6 (ip6_addr | x) [port ip_port] ; 1
alt-transfer-source (ip4_addr | =) [port ip_port] ;]
alt-transfer-source-v6 (ip6_addr | *) [port ip_port] ; 1]

use—alt-transfer-source yes_or_no;]

notify-delay seconds ;]

notify-source (ip4_addr | *) [port ip_port] ;]
notify-source-v6 (ip6_addr | %) [port ip_port] ;]
also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ;
max—-ixfr-log-size number;]

max—-journal-size size_spec;]

coresize size_spec ;]

datasize size_spec ;]

files size_spec ;]

stacksize size_spec ; 1

cleaning-interval number;]

43

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

heartbeat-interval number;]
interface-interval number;]
statistics—interval number;]
topology { address_match_list }];
sortlist { address_match_1list }];
rrset-order { order_spec ; [order_spec ; ... 1 1 };
lame—-ttl number;]

max-ncache-ttl number;]
max—cache-ttl number;]
sig-validity-interval number ;]
min-roots number;]

use-ixfr yes_or_no ;]

provide—-ixfr yes_or_no;]
request-ixfr yes_or_no;]
treat-cr—-as—-space yes_or_no ; |
min-refresh-time number ;]
max-refresh-time number ;]
min-retry-time number ;]
max-retry-time number ;]

port ip_port;]
additional-from-auth yes_or_no ;]
additional-from-cache yes_or_no ;]
random-device path_name ;]
max—-cache-size size_spec ;]
match-mapped-addresses yes_or_no;]
preferred-glue (A | AAAA | NONE);]
edns-udp-size number;]
max—-udp-size number;]

root-delegation-only [exclude { namelist }] ;]
querylog yes_or_no ; |
disable-algorithms domain { algorithm; [algorithm; 1 };]

acache—-enable yes_or_no ;]
acache-cleaning-interval number;]
max—acache-size size_spec ;]
clients-per—-query number ;]
max-clients-per—-query number ;]
masterfile-format (text|raw) ;]
empty—-server name ;]
empty—contact name ;]
empty-zones—enable yes_or_no ;]
disable-empty-zone zone_name ;]
zero—no-soa-ttl yes_or_no ;]
zero—no—-soa-ttl-cache yes_or_no ;]

L B B B W e T T B T R e T e R e T T e T T i T T R e T T T B B e T T T B e T I e R T I e T T R I e e)

}i

6.2.16 options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement may appear only once
in a configuration file. If there is no options statement, an options block with each option set to its
default will be used.

directory The working directory of the server. Any non-absolute pathnames in the configuration file
will be taken as relative to this directory. The default location for most server output files (e.g.
named. run) is this directory. If a directory is not specified, the working directory defaults to *.”,
the directory from which the server was started. The directory specified should be an absolute
path.

44

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

key-directory When performing dynamic update of secure zones, the directory where the public and
private key files should be found, if different than the current working directory. The directory
specified must be an absolute path.

named-xfer This option is obsolete. It was used in BIND 8 to specify the pathname to the named-xfer
program. In BIND 9, no separate named-xfer program is needed; its functionality is built into the
name server.

tkey-domain The domain appended to the names of all shared keys generated with TKEY. When a
client requests a TKEY exchange, it may or may not specify the desired name for the key. If
present, the name of the shared key will be “client specified part” + “tkey-domain”.
Otherwise, the name of the shared key will be “random hex digits” + “tkey-domain”. In
most cases, the domainname should be the server’s domain name.

tkey-dhkey The Diffie-Hellman key used by the server to generate shared keys with clients using the
Diffie-Hellman mode of TKEY. The server must be able to load the public and private keys from
files in the working directory. In most cases, the keyname should be the server’s host name.

cache-file This is for testing only. Do not use.

dump-file The pathname of the file the server dumps the database to when instructed to do so with
rndc dumpdb. If not specified, the default is named_dump . db.

memstatistics-file The pathname of the file the server writes memory usage statistics to on exit. If
specified the statistics will be written to the file on exit.

In BIND 9.5 and later this will default to named.memstats. BIND 9.5 will also introduce mem-
statistics to control the writing.

pid-file The pathname of the file the server writes its process ID in. If not specified, the default is /
var/run/named.pid. The pid-file is used by programs that want to send signals to the running
name server. Specifying pid-file none disables the use of a PID file — no file will be written and
any existing one will be removed. Note that none is a keyword, not a filename, and therefore is
not enclosed in double quotes.

recursing-file The pathname of the file the server dumps the queries that are currently recursing when
instructed to do so with rndc recursing. If not specified, the default is named. recursing.

statistics-file The pathname of the file the server appends statistics to when instructed to do so using
rndc stats. If not specified, the default is named. stats in the server’s current directory. The
format of the file is described in Section 6.2.16.18.

port The UDP/TCP port number the server uses for receiving and sending DNS protocol traffic. The
default is 53. This option is mainly intended for server testing; a server using a port other than 53
will not be able to communicate with the global DNS.

random-device The source of entropy to be used by the server. Entropy is primarily needed for DNSSEC
operations, such as TKEY transactions and dynamic update of signed zones. This options speci-
fies the device (or file) from which to read entropy. If this is a file, operations requiring entropy
will fail when the file has been exhausted. If not specified, the default value is /dev/random (or
equivalent) when present, and none otherwise. The random-device option takes effect during the
initial configuration load at server startup time and is ignored on subsequent reloads.

45

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

preferred-glue If specified, the listed type (A or AAAA) will be emitted before other glue in the addi-
tional section of a query response. The default is not to prefer any type (NONE).

root-delegation-only Turn on enforcement of delegation-only in TLDs (top level domains) and root
zones with an optional exclude list.

Note some TLDs are not delegation only (e.g. “DE”, "LV”, “US” and "MUSEUM”).

options {
root-delegation-only exclude { "de"; "1lv"; "us"; "museum"; };

}i

disable-algorithms Disable the specified DNSSEC algorithms at and below the specified name. Multi-
ple disable-algorithms statements are allowed. Only the most specific will be applied.

dnssec-lookaside When set, dnssec-lookaside provides the validator with an alternate method to val-
idate DNSKEY records at the top of a zone. When a DNSKEY is at or below a domain specified
by the deepest dnssec-lookaside, and the normal dnssec validation has left the key untrusted, the
trust-anchor will be append to the key name and a DLV record will be looked up to see if it can
validate the key. If the DLV record validates a DNSKEY (similarly to the way a DS record does)
the DNSKEY RRset is deemed to be trusted.

dnssec-must-be-secure Specify hierarchies which must be or may not be secure (signed and validated).
If yes, then named will only accept answers if they are secure. If no, then normal dnssec validation
applies allowing for insecure answers to be accepted. The specified domain must be under a
trusted-key or dnssec-lookaside must be active.

6.2.16.1 Boolean Options

auth-nxdomain If yes, then the AA bit is always set on NXDOMAIN responses, even if the server is
not actually authoritative. The default is no; this is a change from BIND 8. If you are using very
old DNS software, you may need to set it to yes.

deallocate-on-exit This option was used in BIND 8 to enable checking for memory leaks on exit. BIND
9 ignores the option and always performs the checks.

dialup If yes, then the server treats all zones as if they are doing zone transfers across a dial-on-demand
dialup link, which can be brought up by traffic originating from this server. This has different
effects according to zone type and concentrates the zone maintenance so that it all happens in a
short interval, once every heartbeat-interval and hopefully during the one call. It also suppresses
some of the normal zone maintenance traffic. The default is no.

The dialup option may also be specified in the view and zone statements, in which case it over-
rides the global dialup option.

If the zone is a master zone, then the server will send out a NOTIFY request to all the slaves
(default). This should trigger the zone serial number check in the slave (providing it supports
NOTIFY) allowing the slave to verify the zone while the connection is active. The set of servers to
which NOTIFY is sent can be controlled by notify and also-notify.

If the zone is a slave or stub zone, then the server will suppress the regular “zone up to date” (re-
fresh) queries and only perform them when the heartbeat-interval expires in addition to sending
NOTIFY requests.

46

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

Finer control can be achieved by using notify which only sends NOTIFY messages, notify-
passive which sends NOTIFY messages and suppresses the normal refresh queries, refresh
which suppresses normal refresh processing and sends refresh queries when the heartbeat-interval
expires, and passive which just disables normal refresh processing.

dialup mode normal refresh heart-beat refresh ~ heart-beat notify
no (default) yes no no

yes no yes yes

notify yes no yes

refresh no yes no

passive no no no
notify-passive no no yes

Note that normal NOTIFY processing is not affected by dialup.

fake-iquery In BIND 8, this option enabled simulating the obsolete DNS query type IQUERY. BIND 9
never does IQUERY simulation.

fetch-glue This option is obsolete. In BIND 8, fetch—-glue yes caused the server to attempt to fetch
glue resource records it didn’t have when constructing the additional data section of a response.
This is now considered a bad idea and BIND 9 never does it.

flush-zones-on-shutdown When the nameserver exits due receiving SIGTERM, flush or do not flush
any pending zone writes. The default is flush-zones-on-shutdown no.

has-old-clients This option was incorrectly implemented in BIND 8, and is ignored by BIND 9. To
achieve the intended effect of has-old-clients yes, specify the two separate options auth-nxdomain
yes and rfc2308-typel no instead.

host-statistics In BIND 8, this enables keeping of statistics for every host that the name server interacts
with. Not implemented in BIND 9.

maintain-ixfr-base This option is obsolete. It was used in BIND 8 to determine whether a transaction log
was kept for Incremental Zone Transfer. BIND 9 maintains a transaction log whenever possible. If
you need to disable outgoing incremental zone transfers, use provide-ixfr no.

minimal-responses If yes, then when generating responses the server will only add records to the au-
thority and additional data sections when they are required (e.g. delegations, negative responses).
This may improve the performance of the server. The default is no.

multiple-cnames This option was used in BIND 8 to allow a domain name to have multiple CNAME
records in violation of the DNS standards. BIND 9.2 onwards always strictly enforces the CNAME
rules both in master files and dynamic updates.

notify If yes (the default), DNS NOTIFY messages are sent when a zone the server is authoritative
for changes, see Section 4.1. The messages are sent to the servers listed in the zone’s NS records
(except the master server identified in the SOA MNAME field), and to any servers listed in the
also-notify option.

If master-only, notifies are only sent for master zones. If explicit, notifies are sent only to
servers explicitly listed using also-notify. If no, no notifies are sent.

47

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

The notify option may also be specified in the zone statement, in which case it overrides the
options notify statement. It would only be necessary to turn off this option if it caused slaves to
crash.

recursion If yes, and a DNS query requests recursion, then the server will attempt to do all the work
required to answer the query. If recursion is off and the server does not already know the answer, it
will return a referral response. The default is yes. Note that setting recursion no does not prevent
clients from getting data from the server’s cache; it only prevents new data from being cached as
an effect of client queries. Caching may still occur as an effect the server’s internal operation, such
as NOTIFY address lookups. See also fetch-glue above.

rfc2308-typel Setting this to yes will cause the server to send NS records along with the SOA record
for negative answers. The default is no.

NOTE

Not yet implemented in BIND 9.

use-id-pool This option is obsolete. BIND 9 always allocates query IDs from a pool.

zone-statistics If yes, the server will collect statistical data on all zones (unless specifically turned off
on a per-zone basis by specifying zone-statistics no in the zone statement). These statistics may
be accessed using rndc stats, which will dump them to the file listed in the statistics-file. See also
Section 6.2.16.18.

use-ixfr This option is obsolete. If you need to disable IXFR to a particular server or servers, see the
information on the provide-ixfr option in Section 6.2.18. See also Section 4.3.

provide-ixfr See the description of provide-ixfr in Section 6.2.18.
request-ixfr See the description of request-ixfr in Section 6.2.18.

treat-cr-as-space This option was used in BIND 8 to make the server treat carriage return (”\r”) charac-
ters the same way as a space or tab character, to facilitate loading of zone files on a UNIX system
that were generated on an NT or DOS machine. In BIND 9, both UNIX "\n” and NT/DOS "\r\n”
newlines are always accepted, and the option is ignored.

additional-from-auth, additional-from-cache These options control the behavior of an authoritative
server when answering queries which have additional data, or when following CNAME and
DNAME chains.

When both of these options are set to yes (the default) and a query is being answered from au-
thoritative data (a zone configured into the server), the additional data section of the reply will be
filled in using data from other authoritative zones and from the cache. In some situations this is
undesirable, such as when there is concern over the correctness of the cache, or in servers where
slave zones may be added and modified by untrusted third parties. Also, avoiding the search for
this additional data will speed up server operations at the possible expense of additional queries
to resolve what would otherwise be provided in the additional section.

For example, if a query asks for an MX record for host foo . example. com, and the record found is
"MX 10 mail.example.net”, normally the address records (A and AAAA)formail.example.

48

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

net will be provided as well, if known, even though they are not in the example.com zone. Setting
these options to no disables this behavior and makes the server only search for additional data in
the zone it answers from.

These options are intended for use in authoritative-only servers, or in authoritative-only views.
Attempts to set them to no without also specifying recursion no will cause the server to ignore the
options and log a warning message.

Specifying additional-from-cache no actually disables the use of the cache not only for additional
data lookups but also when looking up the answer. This is usually the desired behavior in an
authoritative-only server where the correctness of the cached data is an issue.

When a name server is non-recursively queried for a name that is not below the apex of any served
zone, it normally answers with an “upwards referral” to the root servers or the servers of some
other known parent of the query name. Since the data in an upwards referral comes from the
cache, the server will not be able to provide upwards referrals when additional-from-cache no
has been specified. Instead, it will respond to such queries with REFUSED. This should not cause
any problems since upwards referrals are not required for the resolution process.

match-mapped-addresses If yes, then an IPv4-mapped IPv6 address will match any address match
list entries that match the corresponding IPv4 address. Enabling this option is sometimes useful
on IPvé6-enabled Linux systems, to work around a kernel quirk that causes IPv4 TCP connections
such as zone transfers to be accepted on an IPv6 socket using mapped addresses, causing address
match lists designed for IPv4 to fail to match. The use of this option for any other purpose is
discouraged.

ixfr-from-differences When yes and the server loads a new version of a master zone from its zone
file or receives a new version of a slave file by a non-incremental zone transfer, it will compare
the new version to the previous one and calculate a set of differences. The differences are then
logged in the zone’s journal file such that the changes can be transmitted to downstream slaves as
an incremental zone transfer.

By allowing incremental zone transfers to be used for non-dynamic zones, this option saves band-
width at the expense of increased CPU and memory consumption at the master. In particular, if
the new version of a zone is completely different from the previous one, the set of differences will
be of a size comparable to the combined size of the old and new zone version, and the server will
need to temporarily allocate memory to hold this complete difference set.

ixfr-from-differences also accepts master and slave at the view and options levels which causes
ixfr-from-differences to apply to all master or slave zones respectively.

multi-master This should be set when you have multiple masters for a zone and the addresses refer to
different machines. If yes, named will not log when the serial number on the master is less than
what named currently has. The default is no.

dnssec-enable Enable DNSSEC support in named. Unless set to yes, named behaves as if it does not
support DNSSEC. The default is yes.

dnssec-validation Enable DNSSEC validation in named. Note dnssec-enable also needs to be set to
yes to be effective. The default is no.

dnssec-accept-expired Accept expired signatures when verifying DNSSEC signatures. The default is
no. Setting this option to “yes” leaves named vulnerable to replay attacks.

querylog Specify whether query logging should be started when named starts. If querylog is not spec-
ified, then the query logging is determined by the presence of the logging category queries.

49

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

check-names This option is used to restrict the character set and syntax of certain domain names in
master files and/or DNS responses received from the network. The default varies according to
usage area. For master zones the default is fail. For slave zones the default is warn. For answers
received from the network (response) the default is ignore.

The rules for legal hostnames and mail domains are derived from RFC 952 and RFC 821 as modi-
fied by RFC 1123.

check-names applies to the owner names of A, AAA and MX records. It also applies to the domain
names in the RDATA of NS, SOA and MX records. It also applies to the RDATA of PTR records
where the owner name indicated that it is a reverse lookup of a hostname (the owner name ends
in IN-ADDR.ARPA, IP6.ARPA, or IP6.INT).

check-mx Check whether the MX record appears to refer to a IP address. The default is to warn. Other
possible values are fail and ignore.

check-wildcard This option is used to check for non-terminal wildcards. The use of non-terminal wild-
cards is almost always as a result of a failure to understand the wildcard matching algorithm (RFC
1034). This option affects master zones. The default (yes) is to check for non-terminal wildcards
and issue a warning.

check-integrity Perform post load zone integrity checks on master zones. This checks that MX and SRV
records refer to address (A or AAAA) records and that glue address records exist for delegated
zones. For MX and SRV records only in-zone hostnames are checked (for out-of-zone hostnames
use named-checkzone). For NS records only names below top of zone are checked (for out-of-zone
names and glue consistency checks use named-checkzone). The default is yes.

check-mx-cname If check-integrity is set then fail, warn or ignore MX records that refer to CNAMES.
The default is to warn.

check-srv-cname If check-integrity is set then fail, warn or ignore SRV records that refer to CNAMES.
The default is to warn.

check-sibling When performing integrity checks, also check that sibling glue exists. The default is yes.

zero-no-soa-ttl When returning authoritative negative responses to SOA queries set the TTL of the SOA
recored returned in the authority section to zero. The default is yes.

zero-no-soa-ttl-cache When caching a negative response to a SOA query set the TTL to zero. The default
is no.

update-check-ksk When regenerating the RRSIGs following a UPDATE request to a secure zone, check
the KSK flag on the DNSKEY RR to determine if this key should be used to generate the RRSIG.
This flag is ignored if there are not DNSKEY RRs both with and without a KSK. The default is yes.

6.2.16.2 Forwarding

The forwarding facility can be used to create a large site-wide cache on a few servers, reducing traffic
over links to external name servers. It can also be used to allow queries by servers that do not have
direct access to the Internet, but wish to look up exterior names anyway. Forwarding occurs only on
those queries for which the server is not authoritative and does not have the answer in its cache.

forward This option is only meaningful if the forwarders list is not empty. A value of first, the
default, causes the server to query the forwarders first — and if that doesn’t answer the question,

50

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

the server will then look for the answer itself. If only is specified, the server will only query the
forwarders.

forwarders Specifies the IP addresses to be used for forwarding. The default is the empty list (no for-
warding).

Forwarding can also be configured on a per-domain basis, allowing for the global forwarding options to
be overridden in a variety of ways. You can set particular domains to use different forwarders, or have
a different forward only/first behavior, or not forward at all, see Section 6.2.23.

6.2.16.3 Dual-stack Servers

Dual-stack servers are used as servers of last resort to work around problems in reachability due the
lack of support for either IPv4 or IPv6 on the host machine.

dual-stack-servers Specifies host names or addresses of machines with access to both IPv4 and IPv6
transports. If a hostname is used, the server must be able to resolve the name using only the
transport it has. If the machine is dual stacked, then the dual-stack-servers have no effect unless
access to a transport has been disabled on the command line (e.g. named -4).

6.2.16.4 Access Control

Access to the server can be restricted based on the IP address of the requesting system. See Section 6.1.1
for details on how to specify IP address lists.

allow-notify Specifies which hosts are allowed to notify this server, a slave, of zone changes in addition
to the zone masters. allow-notify may also be specified in the zone statement, in which case
it overrides the options allow-notify statement. It is only meaningful for a slave zone. If not
specified, the default is to process notify messages only from a zone’s master.

allow-query Specifies which hosts are allowed to ask ordinary DNS questions. allow-query may also
be specified in the zone statement, in which case it overrides the options allow-query statement.
If not specified, the default is to allow queries from all hosts.

NOTE

allow-query-cache is now used to specify access to the cache.

allow-query-cache Specifies which hosts are allowed to get answers from the cache. If allow-query-
cache is not set then allow-recursion is used if set, otherwise allow-query is used if set, otherwise
the default (localnets; localhost;) is used.

allow-recursion Specifies which hosts are allowed to make recursive queries through this server. If
allow-recursion is not set then allow-query-cache is used if set, otherwise allow-query is used if
set, otherwise the default (localnets; localhost;) is used.

allow-update Specifies which hosts are allowed to submit Dynamic DNS updates for master zones. The
default is to deny updates from all hosts. Note that allowing updates based on the requestor’s IP
address is insecure; see Section 7.3 for details.

51

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

allow-update-forwarding Specifies which hosts are allowed to submit Dynamic DNS updates to slave
zones to be forwarded to the master. The defaultis { none; }, which means that no update for-
warding will be performed. To enable update forwarding, specify allow—update-forwarding
{ any; };. Specifying values other than { none; } or { any; } is usually counterproduc-
tive, since the responsibility for update access control should rest with the master server, not the
slaves.

Note that enabling the update forwarding feature on a slave server may expose master servers
relying on insecure IP address based access control to attacks; see Section 7.3 for more details.

allow-v6-synthesis This option was introduced for the smooth transition from AAAA to A6 and from
“nibble labels” to binary labels. However, since both A6 and binary labels were then deprecated,
this option was also deprecated. It is now ignored with some warning messages.

allow-transfer Specifies which hosts are allowed to receive zone transfers from the server. allow-
transfer may also be specified in the zone statement, in which case it overrides the options allow-
transfer statement. If not specified, the default is to allow transfers to all hosts.

blackhole Specifies a list of addresses that the server will not accept queries from or use to resolve a
query. Queries from these addresses will not be responded to. The default is none.

6.2.16.5 Interfaces

The interfaces and ports that the server will answer queries from may be specified using the listen-on
option. listen-on takes an optional port, and an address.match_list. The server will listen on all
interfaces allowed by the address match list. If a port is not specified, port 53 will be used.

Multiple listen-on statements are allowed. For example,

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

will enable the name server on port 53 for the IP address 5.6.7.8, and on port 1234 of an address on the
machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all interfaces.

The listen-on-v6 option is used to specify the interfaces and the ports on which the server will listen for
incoming queries sent using IPv6.

When
{ any; }

is specified as the address_match_list for the listen-on-v6 option, the server does not bind a separate
socket to each IPv6 interface address as it does for IPv4 if the operating system has enough API support
for IPv6 (specifically if it conforms to RFC 3493 and RFC 3542). Instead, it listens on the IPv6 wildcard
address. If the system only has incomplete API support for IPv6, however, the behavior is the same as
that for IPv4.

A list of particular IPv6 addresses can also be specified, in which case the server listens on a separate
socket for each specified address, regardless of whether the desired APl is supported by the system.

Multiple listen-on-v6 options can be used. For example,

listen-on-v6 { any; };
listen-on-v6 port 1234 { !2001:db8::/32; any; };

52

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

will enable the name server on port 53 for any IPv6 addresses (with a single wildcard socket), and on
port 1234 of IPv6 addresses that is not in the prefix 2001:db8::/32 (with separate sockets for each matched
address.)

To make the server not listen on any IPv6 address, use

listen-on-v6 { none; };

If no listen-on-v6 option is specified, the server will not listen on any IPv6 address.

6.2.16.6 Query Address

If the server doesn’t know the answer to a question, it will query other name servers. query-source
specifies the address and port used for such queries. For queries sent over IPv6, there is a separate
query-source-v6 option. If address is * (asterisk) or is omitted, a wildcard IP address INADDR_ANY)
will be used. If port is * or is omitted, a random unprivileged port will be used. The avoid-v4-udp-
ports and avoid-v6-udp-ports options can be used to prevent named from selecting certain ports. The
defaults are:

query-source address x port x;
query-source-v6 address * port x;

NOTE

The address specified in the query-source option is used for both UDP and
% TCP queries, but the port applies only to UDP queries. TCP queries always use

a random unprivileged port.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP

sockets.

NOTE

See also transfer-source and notify-source.

6.2.16.7 Zone Transfers

BIND has mechanisms in place to facilitate zone transfers and set limits on the amount of load that
transfers place on the system. The following options apply to zone transfers.

also-notify Defines a global list of IP addresses of name servers that are also sent NOTIFY messages
whenever a fresh copy of the zone is loaded, in addition to the servers listed in the zone’s NS
records. This helps to ensure that copies of the zones will quickly converge on stealth servers. If

53

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

an also-notify list is given in a zone statement, it will override the options also-notify statement.
When a zone notify statement is set to no, the IP addresses in the global also-notify list will not
be sent NOTIFY messages for that zone. The default is the empty list (no global notification list).

max-transfer-time-in Inbound zone transfers running longer than this many minutes will be termi-
nated. The default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).

max-transfer-idle-in Inbound zone transfers making no progress in this many minutes will be termi-
nated. The default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).

max-transfer-time-out Outbound zone transfers running longer than this many minutes will be termi-
nated. The default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).

max-transfer-idle-out Outbound zone transfers making no progress in this many minutes will be ter-
minated. The default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).

serial-query-rate Slave servers will periodically query master servers to find out if zone serial numbers
have changed. Each such query uses a minute amount of the slave server’s network bandwidth.
To limit the amount of bandwidth used, BIND 9 limits the rate at which queries are sent. The value
of the serial-query-rate option, an integer, is the maximum number of queries sent per second. The
default is 20.

serial-queries In BIND 8, the serial-queries option set the maximum number of concurrent serial num-
ber queries allowed to be outstanding at any given time. BIND 9 does not limit the number of
outstanding serial queries and ignores the serial-queries option. Instead, it limits the rate at which
the queries are sent as defined using the serial-query-rate option.

transfer-format Zone transfers can be sent using two different formats, one-answer and many-answers.
The transfer-format option is used on the master server to determine which format it sends. one-
answer uses one DNS message per resource record transferred. many-answers packs as many
resource records as possible into a message. many-answers is more efficient, but is only supported
by relatively new slave servers, such as BIND 9, BIND 8.x and BIND 4.9.5 onwards. The many-
answers format is also supported by recent Microsoft Windows nameservers. The default is many-
answers. transfer-format may be overridden on a per-server basis by using the server statement.

transfers-in The maximum number of inbound zone transfers that can be running concurrently. The
default value is 10. Increasing transfers-in may speed up the convergence of slave zones, but it
also may increase the load on the local system.

transfers-out The maximum number of outbound zone transfers that can be running concurrently.
Zone transfer requests in excess of the limit will be refused. The default value is 10.

transfers-per-ns The maximum number of inbound zone transfers that can be concurrently transferring
from a given remote name server. The default value is 2. Increasing transfers-per-ns may speed
up the convergence of slave zones, but it also may increase the load on the remote name server.
transfers-per-ns may be overridden on a per-server basis by using the transfers phrase of the
server statement.

transfer-source transfer-source determines which local address will be bound to IPv4 TCP connections
used to fetch zones transferred inbound by the server. It also determines the source IPv4 address,
and optionally the UDP port, used for the refresh queries and forwarded dynamic updates. If not
set, it defaults to a system controlled value which will usually be the address of the interface “clos-
est to” the remote end. This address must appear in the remote end’s allow-transfer option for

54

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

the zone being transferred, if one is specified. This statement sets the transfer-source for all zones,
but can be overridden on a per-view or per-zone basis by including a transfer-source statement
within the view or zone block in the configuration file.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for

TCP sockets.

transfer-source-v6 The same as transfer-source, except zone transfers are performed using IPv6.

alt-transfer-source An alternate transfer source if the one listed in transfer-source fails and use-alt-
transfer-source is set.

NOTE

% If you do not wish the alternate transfer source to be used, you should set
use-alt-transfer-source appropriately and you should not depend upon

getting a answer back to the first refresh query.

alt-transfer-source-v6 An alternate transfer source if the one listed in transfer-source-v6 fails and use-
alt-transfer-source is set.

use-alt-transfer-source Use the alternate transfer sources or not. If views are specified this defaults to
no otherwise it defaults to yes (for BIND 8 compatibility).

notify-source notify-source determines which local source address, and optionally UDP port, will be
used to send NOTIFY messages. This address must appear in the slave server’s masters zone
clause or in an allow-notify clause. This statement sets the notify-source for all zones, but can
be overridden on a per-zone or per-view basis by including a notify-source statement within the
zone or view block in the configuration file.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for
TCP sockets.

notify-source-v6 Like notify-source, but applies to notify messages sent to IPv6 addresses.

6.2.16.8 Bad UDP Port Lists

avoid-v4-udp-ports and avoid-v6-udp-ports specify a list of IPv4 and IPv6 UDP ports that will not be
used as system assigned source ports for UDP sockets. These lists prevent named from choosing as its
random source port a port that is blocked by your firewall. If a query went out with such a source port,
the answer would not get by the firewall and the name server would have to query again.

55

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.16.9 Operating System Resource Limits

The server’s usage of many system resources can be limited. Scaled values are allowed when specifying
resource limits. For example, 1G can be used instead of 1073741824 to specify a limit of one gigabyte.
unlimited requests unlimited use, or the maximum available amount. default uses the limit that was in
force when the server was started. See the description of size_spec in Section 6.1.

The following options set operating system resource limits for the name server process. Some operating
systems don’t support some or any of the limits. On such systems, a warning will be issued if the
unsupported limit is used.

coresize The maximum size of a core dump. The default is default.

datasize The maximum amount of data memory the server may use. The default is default. This is
a hard limit on server memory usage. If the server attempts to allocate memory in excess of this
limit, the allocation will fail, which may in turn leave the server unable to perform DNS service.
Therefore, this option is rarely useful as a way of limiting the amount of memory used by the
server, but it can be used to raise an operating system data size limit that is too small by default. If
you wish to limit the amount of memory used by the server, use the max-cache-size and recursive-
clients options instead.

files The maximum number of files the server may have open concurrently. The defaultis unlimited.

stacksize The maximum amount of stack memory the server may use. The default is default.

6.2.16.10 Server Resource Limits

The following options set limits on the server’s resource consumption that are enforced internally by
the server rather than the operating system.

max-ixfr-log-size This option is obsolete; it is accepted and ignored for BIND 8 compatibility. The
option max-journal-size performs a similar function in BIND 9.

max-journal-size Sets a maximum size for each journal file (see Section 4.2.1). When the journal file
approaches the specified size, some of the oldest transactions in the journal will be automatically
removed. The defaultis unlimited.

host-statistics-max In BIND 8, specifies the maximum number of host statistics entries to be kept. Not
implemented in BIND 9.

recursive-clients The maximum number of simultaneous recursive lookups the server will perform on
behalf of clients. The default is 1000. Because each recursing client uses a fair bit of memory, on
the order of 20 kilobytes, the value of the recursive-clients option may have to be decreased on
hosts with limited memory.

tcp-clients The maximum number of simultaneous client TCP connections that the server will accept.
The defaultis 100.

max-cache-size The maximum amount of memory to use for the server’s cache, in bytes. When the
amount of data in the cache reaches this limit, the server will cause records to expire prematurely
so that the limit is not exceeded. In a server with multiple views, the limit applies separately to the
cache of each view. The default is unlimited, meaning that records are purged from the cache
only when their TTLs expire.

56

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

tcp-listen-queue The listen queue depth. The default and minimum is 3. If the kernel supports the
accept filter “dataready” this also controls how many TCP connections that will be queued in
kernel space waiting for some data before being passed to accept. Values less than 3 will be silently
raised.

6.2.16.11 Periodic Task Intervals

cleaning-interval The server will remove expired resource records from the cache every cleaning-
interval minutes. The default is 60 minutes. The maximum value is 28 days (40320 minutes).
If set to 0, no periodic cleaning will occur.

heartbeat-interval The server will perform zone maintenance tasks for all zones marked as dialup
whenever this interval expires. The default is 60 minutes. Reasonable values are up to 1 day
(1440 minutes). The maximum value is 28 days (40320 minutes). If set to 0, no zone maintenance
for these zones will occur.

interface-interval The server will scan the network interface list every interface-interval minutes. The
default is 60 minutes. The maximum value is 28 days (40320 minutes). If set to 0, interface scanning
will only occur when the configuration file is loaded. After the scan, the server will begin listen-
ing for queries on any newly discovered interfaces (provided they are allowed by the listen-on
configuration), and will stop listening on interfaces that have gone away.

statistics-interval Name server statistics will be logged every statistics-interval minutes. The default
is 60. The maximum value is 28 days (40320 minutes). If set to 0, no statistics will be logged.

NOTE

Not yet implemented in BIND 9.

6.2.16.12 Topology

All other things being equal, when the server chooses a name server to query from a list of name
servers, it prefers the one that is topologically closest to itself. The topology statement takes an ad-
dress_match _list and interprets it in a special way. Each top-level list element is assigned a distance.
Non-negated elements get a distance based on their position in the list, where the closer the match is
to the start of the list, the shorter the distance is between it and the server. A negated match will be
assigned the maximum distance from the server. If there is no match, the address will get a distance
which is further than any non-negated list element, and closer than any negated element. For example,

topology {

10/8;

11.2.3/24;

{ 1.2/16; 3/8; };
}i

will prefer servers on network 10 the most, followed by hosts on network 1.2.0.0 (netmask 255.255.0.0)
and network 3, with the exception of hosts on network 1.2.3 (netmask 255.255.255.0), which is preferred
least of all.

The default topology is

57

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

topology { localhost; localnets; };

NOTE

The topology option is not implemented in BIND 9.

6.2.16.13 The sortlist Statement

The response to a DNS query may consist of multiple resource records (RRs) forming a resource records
set (RRset). The name server will normally return the RRs within the RRset in an indeterminate order
(but see the rrset-order statement in Section 6.2.16.14). The client resolver code should rearrange the RRs
as appropriate, that is, using any addresses on the local net in preference to other addresses. However,
not all resolvers can do this or are correctly configured. When a client is using a local server, the sorting
can be performed in the server, based on the client’s address. This only requires configuring the name
servers, not all the clients.

The sortlist statement (see below) takes an address_match_list and interprets it even more specifically
than the topology statement does (Section 6.2.16.12). Each top level statement in the sortlist must itself
be an explicit address_match_list with one or two elements. The first element (which may be an IP
address, an IP prefix, an ACL name or a nested address_match_list) of each top level list is checked
against the source address of the query until a match is found.

Once the source address of the query has been matched, if the top level statement contains only one
element, the actual primitive element that matched the source address is used to select the address in
the response to move to the beginning of the response. If the statement is a list of two elements, then the
second element is treated the same as the address_match_list in a topology statement. Each top level
element is assigned a distance and the address in the response with the minimum distance is moved to
the beginning of the response.

In the following example, any queries received from any of the addresses of the host itself will get
responses preferring addresses on any of the locally connected networks. Next most preferred are ad-
dresses on the 192.168.1/24 network, and after that either the 192.168.2/24 or 192.168.3 /24 network with
no preference shown between these two networks. Queries received from a host on the 192.168.1/24
network will prefer other addresses on that network to the 192.168.2/24 and 192.168.3/24 networks.
Queries received from a host on the 192.168.4/24 or the 192.168.5/24 network will only prefer other
addresses on their directly connected networks.

sortlist {
{ localhost; // IF the local host
{ localnets; // THEN first fit on the
192.168.1/24; // following nets
{ 192.168.2/24; 192.168.3/24; }; };: };
{ 192.168.1/24; // IF on class C 192.168.1
{ 192.168.1/24; // THEN use .1, or .2 or .3
{ 192.168.2/24; 192.168.3/24; }; }; };
{ 192.168.2/24; // IF on class C 192.168.2
{ 192.168.2/24; // THEN use .2, or .1 or .3
{ 192.168.1/24; 192.168.3/24; }; }; };
{ 192.168.3/24; // IF on class C 192.168.3
{ 192.168.3/24; // THEN use .3, or .l or .2
{ 192.168.1/24; 192.168.2/24; }; }; };
{ { 192.168.4/24; 192.168.5/24; }; // if .4 or .5, prefer that net

}i
}i

58

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

The following example will give reasonable behavior for the local host and hosts on directly connected
networks. It is similar to the behavior of the address sort in BIND 4.9.x. Responses sent to queries from
the local host will favor any of the directly connected networks. Responses sent to queries from any
other hosts on a directly connected network will prefer addresses on that same network. Responses to
other queries will not be sorted.

sortlist {
{ localhost; localnets; };
{ localnets; };

bi

6.2.16.14 RRset Ordering

When multiple records are returned in an answer it may be useful to configure the order of the records
placed into the response. The rrset-order statement permits configuration of the ordering of the records
in a multiple record response. See also the sortlist statement, Section 6.2.16.13.

An order_spec is defined as follows:
[class class_name] [type type_name] [name "domain_name"] order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY. If no name is
specified, the default is ”"*” (asterisk).

The legal values for ordering are:

fixed Records are returned in the order they are defined in the zone
file.

random Records are returned in some random order.

cyclic Records are returned in a round-robin order.

For example:

rrset-order {
class IN type A name "host.example.com" order random;
order cyclic;

}i

will cause any responses for type A records in class IN that have "host .example.com” as a suffix, to
always be returned in random order. All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined — the last one applies.

NOTE

The rrset-order statement is not yet fully implemented in BIND 9. BIND 9 cur-
rently does not fully support “fixed” ordering.

6.2.16.15 Tuning

lame-ttl Sets the number of seconds to cache a lame server indication. 0 disables caching. (This is NOT
recommended.) The defaultis 600 (10 minutes) and the maximum value is 1800 (30 minutes).

59

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

max-ncache-ttl To reduce network traffic and increase performance, the server stores negative answers.
max-ncache-ttl is used to set a maximum retention time for these answers in the server in seconds.
The default max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl cannot exceed 7 days and
will be silently truncated to 7 days if set to a greater value.

max-cache-ttl Sets the maximum time for which the server will cache ordinary (positive) answers. The
default is one week (7 days).

min-roots The minimum number of root servers that is required for a request for the root servers to be
accepted. The default is 2.

NOTE

Not implemented in BIND 9.

sig-validity-interval Specifies the number of days into the future when DNSSEC signatures automat-
ically