X Print Service Extension Library

Protocol Version 1.0

X Consortium Standard
X Version 11 Release 6.4

A. Deininger
T. Gilg
J. Miller
H. Phinney
C. Prince

Hewlett-Packard Co.

K. Samborn
R. Swick

X Consortium, Inc.

Copyright (c) 1996 Hewlett-Packard Company
Copyright (c) 1996 International Business Machines, Inc.
Copyright (c) 1996 Sun Microsystems, Inc.

Copyright (c) 1996 Novell, Inc.

Copyright (c) 1996 Digital Equipment Corp.

Copyright (c) 1996 Fujitsu Limited

Copyright (c) 1996 Hitachi, Ltd.

Copyright (c) 1996 X Consortium, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window Systelis a trademark of X Consortium, Inc.

1

Table of Contents

X PHINE SEIVICE OVEIVIBW ...ttt e e e ettt ettt e e e e e oo e a bbbttt e et e e e e e e o e e aasnb bt beeeeaaaaeeeesaansnbbebreaaaaaaaens 1
1.1 X Print Service Core COMPONENTS......ccii ittt ete e e e e e ettt e e e e e e e e e s s e aabbbbeeeeaeaaaeaesaaaabnbbeeeeeeaaaaaaas 1
1.2 X Print SEIVICE KEY CONCEPLS ...eeiiiiiieeiie ittt e e e e ettt ettt et e e e e e e e e s nb bbb e et e e eaaaeaesaaannbbareeeeaaaaens 2
1.3 The DeVveloper's/INtEGrator's VIBWu i iiiieeitee e e e e e e ettt e e e e e e e e e e s aaabnbbeseeeeaaaeeaeaaaannnnes 3
1.4 The Printer VENAOI'S VIBW.....ccii ittt et e e e ettt e e e e e e e e e e s bbbt eeaeeeeaaaeeeaaaannns 5
1.5 The System AdMINISIIAtOr'S VIBWcciiiiiiiiiiiiiiiit ettt e e e e e et eeeaaae e e e e e aanneeeeees 5
X Print Service EXtENSION LIDIArYooiii oot e e e e e e e e e e e s st rneeeeaeeeas 7
% T B 1= T o 1= T o 1= T 1= T PSSR 7
A W | o] = 1V O | £ PERRPPRR 7
2.2.1 Creating and Managing Print CONEXES.........ccciiiiiiiuiiiiieiiee e e e e s e st rre e e e e e e e s s sanerraneeeeeeee s 8
2.2.2 Obtaining the Screen for a Print CONEXL.........uuuiiiiiiieee i e e e e e e 10
2.2.3 Obtaining Page DIMENSIONSc.cciiiiuiiiiiieeie e e e e e s s sctre e e ee e e e e e s sssannaseeereaaeeesssannnrnraeeeeees 10
2.2.4 Starting, Ending, and Canceling JODS ... 12
2.2.5 Starting, Ending, and Canceling DOCUMENTS............ccccuviiierieeeee e e e ceriinner e e e e e e e e e e 13
2.2.6 Getting and Putting Data into DOCUMENTSceviiieeieiiiiiiiiiieieree e e e e e e ssssernreere e e e e e e e e s snnnnes 15
2.2.7 Starting, Ending, and Canceling PageS...........oiiiciiiiiiiiiee et eee e r e e 18
A < T Y=Y 1= Tox 112 T TN [T o T | PSSR 19
2.2.9 Getting and Setting AtrIDULESvviiiiiii e 20
2.2.10 GetliNg PriNTEI LISTS...iiiiiiiii ittt e et e e e e e e s e s s e e e e ae e e e s s s sntnranareeeeaeeeesannnnnes 23
2.2.11 Querying Version, EXteNsion, and SCrEEN..........ceviiieeiiiiiiiciiiieiie e e e e e e 24
2.2.12 Getting PDM ParameterS......cccoiiiiiiiiiiiiieiie e e e e et es ettt et e e e e e e s s s astaaaeeeeeaaaeeessnasnnssssareeeaaaees 25
2.2.13 Setting and Getting LOCalE HINLEIS.......cciiiiieeiiiiiciiieeiee e e e e e e e 26

X Print Service Overview 1

1 X Print Service Overview

The X Print Service allows X imaging to non-display devices, such as printers. It is calletPtet’X

Service because the technology will primarily be applied to printing. The technology can, however, be
applied to a range of non-display devices. To date, print rendering technologies have evolved separately
from display rendering technologies. The thrust of the X Print Service is to converge the evolution of these
print and display technologies by extending the use of the X imaging model.

For example, today’s X environment provides a number of APIs and technologies for rendering to a display,

including:
« Xlib
« PEXIib

e XlImaging Extension
* OSF/Motif Toolkit
e Scalable Fonts

By retaining and supplementing these (and many more) standard APIs with one small print-specific API,
libXp, the X Print Service will allow an existing X application to render against a printer in addition to tradi-
tional display devices with small changes.

1.1 X Print Service Core Components

The X Print Service is made up of the following core components:
e X Print Extension - A new X-Server Extension and corresponding X Print Extension Protocol.

« libXp - The X Print Extension Library which provides an API for applications to the X Print Exten-
sion Protocol.

e X Print “DDX" Drivers - DDX-level drivers for the X Server that generate page description lan-
guages (PDL) such as PCL and Postscript.

« Configuration Files and Defaults - Configuration files that describe the capabilities of several
printer models, and other X Print Server configuration files.

The X Print Service is enhanced by the addition of the following components that are not included in this
standard:

» libDtPrint - A library of print-specific GUIs tuned to several reference page-description-languages
and printer models. See the Common Desktop Environment Specification, Version 2.

e dtpdm - Also known as the Dt Print Dialog Manager, a daemon-like process that provides second-
ary printer-specific GUIs that handle specific printer and spooler setup tasks. See the Common
Desktop Environment Specification, Version 2.

Several keywords and concepts used in this specification were borrowed from the abstract standard 1SO
10175, the subsetted standard and implementation represented by POSIX 1387.4, and the yet further subset-
ted implementation represented by OSF Palladium. The X Print Service does not attempt to duplicate the
functionality or APIs provided by any of these print subsystems, or by any other print subsystems such as
System V Ip or BSD Ip. It does, however, attempt to allow implementations to work with these print sub-
system, and its architecture is open enough to allow tighter binding to a specific print subsystem in the

future.

X Version 11 Release 6.4

2 X Print Service Overview

1.2 X Print Service Key Concepts

The center of the X Print Service is té’rint ServerTo anX application it should look and behave like a
regularX Servemwith the following enhancements.

Figure 0-1.X Print Service Key Concepts Diagram

X Application

g §etPri erLis
reateContext
E 16art e0r|n
)'('p)ﬁ':rng ob I

XpNotifyPdm
PO A
etAttributes

DIX + OS + rint Extension

Print Context

Job, Document & Page attribu
Server & Printer attributes,

Print DDX

i

Printers config fil&config needed)

Printer model filegprovided by printer vendors
Print Spooler Printer attribute filegsome config needed)

DDX config files(provided by DDX vendors)

When theX Print Serverstarts, it may read a configuration file for instructions concerning vphnichDDX
driversto load and which printer names to support. It may also read some DDX dependent configuration
files.

At this point, theX Print Serveknows which printers to support, and has access to printer model configura-
tion files that describe the capabilities of the printer models. Parallel to the printer model configuration files
are some printer attribute configuration files which can be modified if per-printer customization is desired.

When an application wishes to print, it can make a display connectionXoRthiet Serverand ask to see
the list of available printers by way of tKpGetPrinterList request. Once the application has selected a
printer, it can create and sePent ContextusingXpCreateContext andXpSetContext.

ThePrint Contextrepresents the embodiment of the printer selected. It is initialized byRhat Servemt
XpCreateContext time to contain a printer's default capabilities as well as the description of its overall capa-
bilities, and to maintain the state of settings on the printer, the state of rendering against the printer, and the
rendered output. The Print Context affects howBX driver generates its page description language

(PDL), and how the PDL is submitted to a spooler. The Print Context may also affect fonts and other ele-

Release 6.4 - X Version 11

X Print Service Overview 3

1.3

ments in thalix layerof theX Print ServerThe most outwardly visible aspects of a Print Context are the
attribute poolscontained within it. These attributes express and control server, printer, job, document and
page options. Attribute pools can be accessed and modifiedXp§ieidttributes andXpSetAttributes.

Because Print Contexts can be shared among processes, applications can enlist thesbetmdaey pro-

cessto manipulate print options in the Print Context rather than taking on the task directly. The convenience
routineXpGetPdmStartParams is provided to enlist the help of tReint Dialog Manager By externalizing

this task, new configuration dialogs and capabilities can be added without having to modify individual appli-
cations.

In most cases, the dialogs displayed IBriat Dialog Managemwill be tuned to the capabilities of the corre-
spondingDDX driver. It is possible to have multipkerint Dialog Managerseach one responsible for han-
dling setup tasks for a different PDL.

Once the application has, with or withouPant Dialog Manager’'shelp, set options within the Print Con-
text, the application can make calls suchgtartJob to delineate jobs, documents and pages within a
sequence of normal X calls. Conceptualljglais a collection oflocumentswhere each document is in turn

a collection ofpages WhenXpEndJob is called, the resulting PDL is either sent to a print spooler or can be
retrieved by the application.

The Developer's/Integrator’s View
The developer or integrator is the person who will modifiXapplicationto use the X Print Service.

From the application’s perspective, it can attach to one of two nearly identical X Servers (see figufe points
andB in the following diagram). The primary difference is that when connected ¥ Riist Serve addi-

tional calls can be made to delineate print “jobs”, “documents” and “pages”, and to create and modify a Print
Context. The functions of the two servers may be combined into a single process, but applications will usu-

ally find it convenient to open separate connections for video and print rendering.

Conceptually, a “job” is a collection of “documents”, where each document is in turn a collection of
“pages”. Depending on the print facilities underlying ¥hBrint Server(for example, a print management
system conforming to POSIX 1387.4), these delineations may be translated into tangible functionality.

X Version 11 Release 6.4

4 X Print Service Overview

Figure 0-2. Developer's/Iintegrator’s View

X Application

X Video Server X Print Server

~
R\
Application Application
Display Window Print Window

Coordinated
Print Setup
GUIs

Printer Spooler Subsyste

Dt Print Dialog Manager,

A simple X application supplemented with some of the libXp routines might look like this:

%

/* Connect to the X Print Server

*

p(/JIpy = XOpenDi spl ay(printServerName);

%

/* See if the printer “myLaser” is available

*

pI/ist = XpGet Pri nt er Li st (pdpy, “myLaser”, &plistCnt);
/*

* |nitialize a print context representing “mylaser”

*

péontext = XpCr eat eCont ext (pdpy, plist[0].name);
XpFreePrint erLi st (plist);

%

/* Possibly modify attributes in the print context

*

at/trPooI = XpGet At t ri but es(pdpy, pcontext, poolType);

/* twiddle attributes */
XpSet At t ri but es(pdpy, pcontext, poolType, attrPool, XPAttrMerge);

Release 6.4 - X Version 11

X Print Service Overview 5

/*
* Set a print context, then start a print job against it
*
XpSet Cont ext (pdpy, pcontext);
XpSt art Job(pdpy, XPSpool);
/*
* Generate the first page

*/
pscreen = XpGet Scr eenOf Cont ext (pdpy, pcontext);
pwin = XCr eat eW ndow(pdpy, pscreen,);

XpSt ar t Page(pdpy, pwin, True);
usual_rendering_stuff(pdpy, pscreen, pwin);
XpEndPage(pdpy);
/*
* Generate more pages, and so on...
*/
XpSt ar t Page(pdpy, pwin, True);
more_rendering_stuff(pdpy, pscreen, pwin);
XpEndPage(pdpy);
/*
* End the print job - the final results are sent by the
* X Print Server to the spooler subsystem
*
XpEndJob(pdpy);
XpDest r oyCont ext (pdpy, pcontext);

1.4 The Printer Vendor’'s View

The printer vendor is the person or company that wishes to enhance the X Print Service to support a new
printer model or a new page description language. Enhancements may range from simple ones such as pro-
viding new printer model configuration files, to more complex ones such as providindXetlriver and
corresponding?rint Dialog Manager

The major elements within the X Print Service that can be enhanced are:

» TheDDX driverlayer in the XPrint Server New DDX drivers can be added to support new page
description languages, provide more capabilities, or provide tighter integration with a given printer
model.

» ThePrint Dialog Manager either as a new executable or an enhancement to an existing Print Dia-
log Manager. It can be used to provide dialogs that expose highly printer-specific options to the user
and that communicate with tf¥DX driver by way of the Print Context attributes.

» The printer model files. These files describe the capabilities and defaults of printers based on the
model.

1.5 The System Administrator’s View

The system administrator is the person who configures and maintains the system processes and files associ-
ated with the X Print Service. An X Print Service implementation will typically have built-in fallback
defaults for nearly everything, but in custom environments it will be configured considerably.

X Version 11 Release 6.4

6 X Print Service Overview

The X Print Service architecture has been designed so that support for specific page description languages
and spooler subsystems is isolated toxtHerint Server’'s DDX layeand a corresponding layer in tRant

Dialog Manager Using this architecture support for new page description languages and spooler subsystems
can be added centrally, without reconfiguring applications.

Support information for specific types of printers and descriptions of the printer topology is typically stored
in centralized configuration files, which are maintained bytReint ServerUsing libXp, the configuration
information can be retrieved both by applications and byptHerint Dialog Manager

The key areas of configuration and system administration are:

» X Print Service Startup - Deciding whether a “per-user " or “global service” model of operation is
desired. In the per-user model, a separate X Print Server process with its own Print Dialog Manager
exists for each desktop. In the global service model, a centralized X Print server process services
multiple users in a workgroup. Typically, there may be one such centralized process per shared
printer.

» X Print ServelStartup - Configuration files to control which printers are available.

» Attribute files - A collection of files that define the full range of capabilities of the printers accessed
by theX Print Serverge.g. 150, 300 and 600dpi supported), and default values (e.g. use 300dpi).

» Printer Model files - A collection of files typically supplied by a printer vendor to describe the capa-
bilities of specific printer models (e.g. Laserjet 4si). These files will generally not require reconfig-
uration, but may be useful to reference when configuring files that describe the actual physical
printers available (e.g. eliminate the duplex printing option because the printer’s duplexer isn’'t
working).

Release 6.4 - X Version 11

X Print Service Extension Library 7

2 X Print Service Extension Library

These functions provide access to the X Print Protocol Extension to X. In addition, some convenience func-
tions over the X Print Extension Protocol and core X Protocol are provided which make it easier for an
application programmer to use the X Print Service.

The X Print Service Extension Library concentrates on print job, document and page management. It
includes the following calls:

* XpCreateContext

* XpSetContext
XpGetContext

» XpDestroyContext

e XpGetScreenOfContext
» XpGetPageDimensions
e XpStartJob

e XpEndJob

e XpCancelJob

* XpStartDoc

e XpEndDoc

e XpCancelDoc
XpPutDocumentData

* XpGetDocumentData

e XpStartPage

e XpEndPage

e XpCancelPage

e XpSelectinput

e XplnputSelected

» XpGetAttributes

e XpSetAttributes

e XpGetOneAttribute

e XpGetPrinterList

e XpFreePrinterList - convenience routine
e XpRehashPrinterList

e XpQueryVersion

» XpQueryExtension - convenience routine
* XpQueryScreens

» XpGetPdmStartParams - convenience routine
e XpSetLocaleHinter

e XpGetLocaleHinter

2.1 Dependencies

The X Print Service is an extension to the core X protocol, and cannot be used outside of the X environment.

2.2 Library Calls

The header fil&11/extensions/Print.h contains prototypes for the following routines.

X Version 11 Release 6.4

X Print Service Extension Library

2.2.1 Creating and Managing Print Contexts

-

UseXpCreateContext to create and initialize a new print context.

XPContext XpCreateContextliplay, printer_name

Display *display,

char *printer_name
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
printer_name The name of a printer on display. String encoded as COMPOUND_TEXT.

XpCreateContext creates a new print context that is initialized with the default printer attributes and other
information available for printer_name on display. A print context maintains the printer name, print
attributes, font capabilities, print (rendering) state and results, and is the object upon which the Xp calls act.

If the library fails to generate a new print context-id, a valudoné is returned, otherwise a print context-id
is always returned. If printer_name is invaliddaaMatch is generated later by thePrint Server

A call to XpGetPrinterList will return a valid list of values for printer_name. All printer name values in the X
Print Service are encoded as COMPOUND_TEXT (of which the 1SO-8859-1 code-set is a proper subset).

As soon as a print context is created, the print attributes in it can be accessed and modified by calling
XpGetAttributes andXpSetAttributes, and the event selections in it can be modified by cafipSglectinput and
XplnputSelected. Other Xp calls that explicitly take a print context-id as a parameter will operate directly on
that print context. All Xp and X calls without a print context-id parameter (for example, all rendering ori-
ented calls likeXpStartJob andXDrawLine) require that a print context be set on the display connection (see
XpSetContext). Failure to set a print context prior to calling a print-context-dependent call will result in the
generation of aXPBadContext error.

The XPContext returned ¥pCreateContext is an XID, and can be used to set the print context on display
connections by callingpSetContext. The XPContext id can be shared between processes and display con-
nections. It is the responsibility of the clients sharing a print context to coordinate their usage of the context;
for example they must ensure that in-use print contexts are not prematurely destroyed.

The context_id remains valid for all clients until 1) the client creating the print context closes its display con-
nection, or 2) any client cal¥pDestroyContext. The context_id can be kept valid after the creating client's
display connection closesXBetCloseDownMode is called on display witRetainPermanent or RetainTempo-

rary.

After creating a print context, and possibly modifying XR®ocAttr attributedocument-format using a value

from the list of available formats shown in &KPrinterAttr attributedocument-formats-supported, the applica-

tion must query th& Print Servewvia XpGetScreenOfContext for the screen that has been associated with the
print context, and then create all server resources that will be used in the print job on that screen. Failure to
do so will result in undefined behavior.

WhenXpCreateContext is called, thelient’s locale (se&pSetLocaleHinter) is included in the request as a

“hint” to the X Print Serverlf supported by the implementation, théPrint Servemwill use the hint to ini-

tialize the attribute pools with any localized attribute values (for example, the human re&®ablerAttr

attribute “descriptor” may be available in several different languages, and the hint will be used to select one).
If the X Print Servercannot understand the hint, tkd°rint Serverchooses a default value.

This function can generateBadMatch error if the specified printer_name does not exist on display, or if the
print server could not interpret the code set specified in printer_name.

UseXpSetContext to set or unset a print context with the specified display connection XoRhat Server

void XpSetContextdisplay print_contex}
Display *display

Release 6.4

X Version 11

X Print Service Extension Library 9

L

XPContextprint_context
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context A pre-existing print context on the same X Server.

XpSetContext sets the print context for a display connection. All subsequent print operations that do not
explicitly take a print context-id (for examphgpStartJob) on display will use and act upon the print context
set by this call, until the print context is unseXpbestroyContext is called. The print context can be set and
used on multiple jobs, if not destroyed.

If print_context ifNone, XpSetContext will unset (disassociate) the print context previously associated with
display. If there was no previously associated print context, no action is taken. The content of the formerly
associated print context is not affected by this call, and other display connections may continue to use the
print context.

Since font capabilities can vary from printer to prin¥gietContext may modify the list of available fonts
(seeXListFonts) on display, and the actual set of usable fontsXkeaFont). A uniqgue combination of fonts
may be available from within a given print context; a client should not assume that all the fonts available
when no print context is set will be available when a print context is set.

When a print context is set on a display connection, the default behalisiFafts andListFontsWithinfo is

to list all of the fonts normally associated with the X print server (i.e. fonts containing glyphs) as well as any
internal printer fonts defined for the printer. Mpdistfonts-modes attribute is provided so that applications

can control the behavior aistFonts andListFontsWithinfo and is typically used to show just internal printer

fonts. Using only internal printer fonts is useful for performance reasons; the glyphs associated with the font
are contained within the printer and do not have to be downloaded.

If the value ofxp-listfonts-modes includesxp-list-glyph-fonts, ListFonts andListFontsWithinfo will include all of
the fonts available to the server that have glyphs associated with them. If the vaHisfafts-modes
includesxp-list-internal-printer-fonts, thenListFonts andListFontsWithinfo will include all of the fonts defined as
internal printer fonts.

When the print context is unsetXpDestroyContext is called, the available fonts on display revert back to
what they were previously.

XpSetContext can generate aXxPBadContext error.

UseXpGetContext to get the current print context-id for a display connection.

XPContext XpGetContextl(splay)
Display *display;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpGetContext returns the id of the current print context associated with display. If a print context has not been
set, a value dflone is returned.

UseXpDestroyContext to unset and destroy a print context.

void XpDestroyContextdisplay print_contex}

Display *display;

XPContextprint_context
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context Specifies the print context to destroy.

X Version 11 Release 6.4

10 X Print Service Extension Library

XpDestroyContext closes any outstanding associations between the print context and any display connections,
and then destroys the print context. All display connections using the print context will no longer be able to
access the print context.

Destroying a print context will cause any in-progress pages, documents and jobs to be canceled Within the
Print Server

XpDestroyContext can generate aXPBadContext error.

2.2.2 Obtaining the Screen for a Print Context
UseXpGetScreenOfContext to obtain a pointer to the screen associated with the specified print context.

Screen *XpGetScreenOfContextigplay print_contex}

Display *display

XPContextprint_context
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context A pre-existing print context. This argument is currently ignored, but must be specified.

XpGetScreenOfContext returns the screen that is associated with the current print context of display. This call
must be made afteipSetContext to determine which specific screen other X resources must be created on.

Each printer supported by a print server is associated with exactly one of the screens returned in the connec-
tion setup reply.

XpGetScreenOfContext will generate aiXPBadContext error if print_context is invalid.

2.2.3 Obtaining Page Dimensions
UseXpGetPageDimensions to get the page dimensions for the current printer settings.

’7 Status XpGetPageDimensiombsplay print_context, width, height, reproducible_ayea
Display *display
XPContextprint_context
unsigned shortwidth;
unsigned shortHheight
XRectangleteproducible_area

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context A pre-existing print context.
width Returns the pixel width of the page currently selected in the print context.
height Returns the pixel height of the page currently selected in the print context.
L reproducible_areReturns the net reproducible area of the page currently selected in the print context,

expressed in pixel offsets and dimensions.

XpGetPageDimensions considers the medium currently selected in the print context (derived in part from
default-medium, default-input-tray, input-trays-medium, content-orientation, default-resolution), and returns
the total width and height of the page in pixels, and the net reproducible area within the total width and
height. The net reproducible area is the portion of the page on which the printer is physically capable of
placing ink.

XpGetPageDimensions returns a Status @fon failure, orl on success.

XpGetPageDimensions can generate afPBadContext error.

Release 6.4 X Version 11

X Print Service Extension Library 11

-

UseXpSetimageResolution to set the resolution for subsequBuiimage requests.

Bool XpSetimageResolutiomigplay print_context, image_res, prev_res_refurn
Display *display,
XPContextprint_context
intimage_res
int *prev_res_return
display Specifies a pointer to the Display structure.
print_context Specifies the print context on which to set the resolution.
image_res Specifies the image resolution in pixels per inch.
prev_res_return Returns the previous image resolution in pixels per inch.

XpSetimageResolution returnslrue if the printer server allowed the resolution to be set, othefaiseis
returned.

XpSetimageResolution sets the resolution for subsequuttmage requests to the screen of the specified print
context. If the return value False, then the print server does not support image scaling for the particular res-
olution given the current configuration of the printer, and the application is responsible for any desired scal-
ing. If the return value i&ue, then the contents of any subsequRtimage request to a Pixmap or to a

Window on the screen of the specified print context will automatically be scaled as paRulithge

request. The scale factor is:

default_printer_resolution / image_res

Where default_printer_resolution is the current value of that page attribute. Only the image itself is scaled
(meaning the effective width and height of the image change), the dst-x and dst-y pararRetleragare
not altered.

As a special case, a value of zero for image_res resets the resolution to automatically track the printer reso-
lution; in this case (which is also the default setting for a newly created print context), subsequent images
will not be scaled.

If the return value iSrue and prev_res_return is a nbLL pointer, then the previous image resolution that
was set for the print context is stored in prev_res_return.

XpSetimageResolution returnsFalse immediately if image_res is negative or greater than 65535.
XpSetimageResolution can generate aPBadContext error.

UseXpGetimageResolution to get the current image resolution for a print context.

int XpGetlmageResolutiord{splay print_contex}
Display *display,
XPContextprint_context
display Specifies a pointer to the Display structure.
print_context Specifies the print context on which to get the resolution.

XpGetimageResolution returns the current image resolution for the specified print context. A value of zero
means the resolution automatically tracks the printer resolution. If the request fails in some way, a negative
value is returned.

XpGetimageResolution can generate afpBadContext error.

X Version 11 Release 6.4

12 X Print Service Extension Library

2.2.4 Starting, Ending, and Canceling Jobs
UseXpStartJob to indicate the beginning of a single print job.

void XpStartJok{display, output_mode)

Display *display,

XPSaveDatautput_mode
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
output_mode Specifies how the printer output data is to be handled.

XpStartJob signals the beginning of a new print job.

If output_mode iXPSpool the X Print Servemwill automatically spool the printer output. If output_mode is
XPGetData, then theX Print Servetbuffers the document output for retrievalXpGetDocumentData. In this

case, the print server suspends processing further requests on this print context until some other client sends
XpGetDocumentData. Subsequent operations that use the print context may be suspended at any time pending
the processing ofpGetDocumentData replies to read any buffered output.

TheXPSaveData values for output_mode are defined in <X11/extensions/Print.h>.

#define XPSpool 1 /*Job data sent to spooler */
#define XPGetData 2 /¥ Job data via XpGetDocumentData */

XpStartJob sets the job-owner job attribute (included in the XPJobAttr pool) immediately prior to issuing the
PrintStartJob request. On POSIX systems, thie-gwner attribute is set using getpwuid_r on the result of
getuid. This attribute may be used by ¥€rint Servetto identify the user to the spooler.

All changes to th&PJobAttr attribute pool (seX¥pSetAttributes) must be made prior to callingStartJob, after
which anXPBadSequence will be generated if changes are attempted, ¥pEhdJob is called.

For clients selectingPPrintMask (seeXpSelectinput), the evenXPPrintNotify will be generated with its detail
field set taXPStartJobNotify when theX Print Servethas completed thérintStartJob request.

Conceptually, a “Job” is a collection of “Documents”, where each Document is in turn a collection of
“Pages”. Depending on the print facilities underlyingXherint Serverthese delineations may be mapped
by a DDX driver into real functionality (e.g. see the server attritultéle-documents-supported).

XpStartJob can generate one of the following errors:
XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for exampXpEndJob prior to XpStartJob).

BadValue The value specified for output_mode is not valid.

UseXpEndJob to indicate the ending of a single print job.

void XpEndJol(display)
Display *display,
display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpEndJob signals the end of a print job. Any accumulated print data that remains is either sent to the printer
or made available t§pGetDocumentData.

For clients selectingPPrintMask (seeXpSelectinput), the evenXPPrintNotify will be generated with its detall
field set toXPEndJobNotify when theX Print Servethas completed the request.

Release 6.4 X Version 11

X Print Service Extension Library 13

XPEndJobNotify indicates that the document data has been sent to the spooler (outpuiXPSpokE)yor
been completely sent to the client ¥gGetDocumentData (output_modeXPGetData) - it does not mean that
the document data has been completely received and processed by the client or spooler.

XpEndJob can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for examp¥eEndJob prior toXpStartJob).

UseXpCancelJob to cancel a single print job.

void XpCancelJolgdisplay, discard)

Display *display;

Bool discard
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
discard WhenTRUE, specifies that akPPrintNotify events should be discarded.

XpCanceldob cancels an in-progress job. If the job was started with output_KRtiktData then the data
stream tXpGetDocumentData is terminated. For many page description languages such arbitrary termination
may invalidate the output.

If the job was started with output_moXiéSpool then depending on the driver and spooler configuration the
entire job may be canceled or a partial job may be generated.

If discard is TRUE, alKPPrintNotify events with a detail field &PEndPageNotify, XPEndDocNotify, or XPEnd-
JobNotify are discarded befodpCancelJob returns.

For clients selectingPPrintMask (seeXpSelectinput), the evenXPPrintNotify will be generated with its detall
field set toXPEndJobNotify.

XpCanceldob can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for exampXpEndJob prior to XpStartJob).

2.2.5 Starting, Ending, and Canceling Documents
UseXpStartDoc to indicate the beginning of a print document.

void XpStartDoddisplay, type)

Display *display

XPDocumentTypeype
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
| type Specifies the type of document. It can be ei¥irocRaw or XPDocNormal.

XpStartDoc signals the beginning of a new print document.

If type isXPDocRaw, then the client will provide all the data for the resulting document ¥siidgDocument-
Data; theX Print Servemwill not write any data into the resulting document. Calkp8tartPage in a
XPDocRaw document will generate an XPBadSequence error. For more informatiofpPsd#ocumentData.

X Version 11 Release 6.4

14 X Print Service Extension Library

If type isXPDocNormal, then theX Print Servewill generate document data, and depending on the DDX
driver, can incorporate additional data frépPutDocumentData into the output. For more information, see

XpPutDocumentData.

TheXPDocumentType values are defined in <X11/extensions/Print.h>:
#define XPDocNormal 1 /*Doc data handled by Xserver*/
#define XPDocRaw 2 /* Doc data passed through Xserver*/

All changes to th&PDocAttr attribute pool (se¥pSetAttributes) must be made prior to callingpStartDoc,
after which an XPBadSequence will be generated if changes are attemptethFndbbc is called.

The application is not required to cAfiStartDoc andXpEndDoc in the process of printing. The “document”
delineation may not be useful from the application’s or spooler’s perspective, hence is optional. If
XpStartPage is called immediately aftefpStartJob then a syntheti¥pStartDoc with XPDocNormal will be
assumed by the Print Serveiprior toXpStartPage (i.e. theXPStartDocNotify andXPStartPageNotify events will
have the same sequence number). LikewisgHhdJob is called immediately aftefpEndPage then a syn-
theticXpEndDoc will be assumed by thé Print Serverprior toXpEndJob (i.e.,the XPEndDocNotify and
XPEndJobNotify events will have the same sequence number).

For clients selectingPPrintMask (seeXpSelectinput), the evenXPPrintNotify will be generated with its detail
field set toXPStartDocNotify.

XpStartDoc can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (examp¥pStartDoc prior to XpStartJob).

BadValue The value specified for type is not valid.

UseXpEndDoc to indicate the ending of a print document.

void XpEndDod(display)
Display *display;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpEndDoc signals the end of a print document. All resulting document data is assembled and combined with
data previously sent B¥pPutDocumentData.

For clients selectingPPrintMask (seeXpSelectinput), the evenKPPrintNotify will be generated with its detail
field set toXPEndDocNotify.

XpEndDoc can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (examp¥pEndDoc prior to XpStartDoc).

UseXpCancelDoc to cancel a print document.

void XpCancelDoddisplay, discard)
Display *display
Bool discard
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
discard WhenTRUE, specifies that akPPrintNotify events with a detail dfPEndPageNotify or
XPEndDocNotify should be discarded.

Release 6.4 X Version 11

X Print Service Extension Library 15

XpCancelDoc cancels an in-progress document. If the job was started with output XP@etBata then the

data stream t¥pGetDocumentData is interrupted; no further data for the current document will be generated
but data for subsequent documents can be generated. For many page description languages such arbitrary
termination may invalidate the output.

If the job was started with output_moXieSpool then depending on the driver and spooler implementation
the entire document may be canceled or a partial document may be generated.

If discard isTrue all XPPrintNotify events with a detail field ®PEndPageNotify or XPEndDocNotify are dis-
carded befor&pCancelDoc returns.

For clients selectingPPrintMask (seeXpSelectinput), the evenKPPrintNotify will be generated with its detail
field set toXPEndDocNotify.

XpCancelDoc can generate one of the following errors:
XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (examp¥pEndDoc prior to XpStartDoc).

2.2.6 Getting and Putting Data into Documents

-

UseXpPutDocumentData to send and incorporate data into the output.

void XpPutDocumentDat@isplay, drawable, data, data_len, doc_fmt, options)
Display *display,
Drawabledrawable
unsigned chafdata;

int data_len
char*doc_fmt
char*options
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
drawable Specifies the destination drawable for rendering.
data Specifies the device-specific data sent.
data_len Specifies the number of bytes in data.
doc_fmt Specifies the type of data sent. See below for valid values. String limited to XPCS
characters.
options Specifies DDX driver dependent options. String limited to XPCS characters.

Depending on type fotpStartDoc, XpPutDocumentData has two modes of operation.

In XPDocRaw mode XpPutDocumentData sends data directly to the output, and drawable mustrge else a
BadDrawable error will be generated. ThePrint Serverdoes not emit document or page control codes into
the output, and data is passed through unmodified. This is useful for sending previously constructed and
complete documents using thePrint Serves job control and submission capabilities. The printer attribute
xp-raw-formats-supported defines the valid values for doc_fmt in this mode, with unsupported values for
doc_fmt causing BadMatch error to be generated.

In XPDocNormal mode XpPutDocumentData sends data to thé Print Serverand depending on the DDX

driver implementation, integrates data into the output. The parameters doc_fmt and options describe the for-
mat of data which guides the DDX driver in interpreting data. The printer attxpatebedded-formats-sup-

ported defines the valid values for doc_fmt in this mode, with unsupported values for doc_fmt causing a
BadMatch error to be generated.

If doc_fmt is not in eithexp-raw-formats-supported or xp-embedded-formats-supported aBadValue error is gen-
erated.

X Version 11 Release 6.4

16 X Print Service Extension Library

Depending on the DDX driver implementation in u§gutDocumentData might be used, for example, to

send a simple text file to a Postscript DDX driver that is capable of wrapping the appropriate document and
page control constructs around the text so that it can be printed on a Postscript printer. Likewise, Encapsu-
lated Postscript Files might be handled. Another use could be to send a TIFF file to a PCL DDX driver that
can convert the image from TIFF into PCL and then integrate it into the current PCL output.

There is no limit to the value of data_l&pPutDocumentData automatically decomposes the call into multi-
ple protocol requests to make sure that the maximum request size of the server is not exceeded.

XpPutDocumentData can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for examp¥pPutDocumentData prior toXpStartDoc).

BadValue The value specified for doc_fmt is not supported.

BadMatch The value specified for doc_fmt is not valid for the current document type or the
value specified for drawable is not valid for the print context and print screen.

BadDrawable The value specified for drawable is not valid.

UseXpGetDocumentData to setup callbacks to retrieve document data from a print context

’7 Status XpGetDocumentDafdata_display, context, save_proc, finish_proc, client_data)
Display *data_display
XPContextcontext
XPSaveProsave_prog
XPFinishProdinish_prog
XPointerclient_data
data_display = Specifies a pointer to the Display structure; returned from XOpenDisplay.

context The print context from which document data is to be retrieved.
save_proc A procedure to be registered and called repeatedly to save blocks of document data.
finish_proc A procedure to be registered and called once when the print job has completed and all
document data has been sent to save. proc
_ client_data Specifies client data to be passed to save_proc and finish_proc when called.

The return value iINULL if XpGetDocumentData encounters an error, ndiJLL otherwise.

XpGetDocumentData registers callbacks that allow a “consumer” to continuously retrieve document data gen-
erated in theX Print Servelby a separate “producer”, where both are referencing the same print context by
way of differentdisplay connections. ThougipGetDocumentData retrieves document data, its effect is

bounded byXpStartJob andXpEndJob. XpGetDocumentData always returns immediately; if an error occurs and

the callbacks cannot be registered, the return status is 0, else the return status is non-zero and the callbacks
will be called sometime after the return fréipGetDocumentData. This producer/consumer exchange is set

up whenXpStartJob is called by the producer with output_mode egif&letData, and is subsequently initi-

ated wherKpGetDocumentData is called by the consumer. ThougpbtartJob will return immediately, further

attempts to use the producer’s display connection may be blocked ¥yPitret Servemuntil XpGetDocu-

mentData is called on the consumer’s display connection.

OnceXpGetDocumentData is called on data_display, data_display cannot be used for any additional X

requests until finish_proc is called and returns. Further, data_display cannot be closed from within save_proc
or finish_proc. To avoid deadlock, the producer and consumer must run in separate processes, or in separate
threads of a single process.

The save_proc is defined in <X11/extensions/Print.h> as:

Release 6.4 X Version 11

X Print Service Extension Library 17

typedef void (*XPSaveProc)(Display *dat a_di spl ay,
XPContext cont ext,
unsigned char *dat a,
unsigned int data_l en,
XPointer cli ent_dat a);

The save_proc is repeatedly called on each chunk of document data serX IRrititeServemntil either
XpEndJob orXpCancelJob is called. data_len specifies the number of bytes in data. The memory for data itself
is owned by the library, so save_proc should copy data to another location before returning. After the last
block of data has been delivered to save_proc, finish_proc is called with final status.

The finish_proc is defined in <X11/extensions/Print.h> as:

typedef void (*XPFinishProc)(Display *dat a_di spl ay,
XPContext cont ext,
XPGetDocStatus st at us,
XPointer client_data);

After XpGetDocumentData successfully registers the callbacks, any generated X errors (for exBadplieg)

or Xp errors (for examplePBadContext or XPBadSequence) that are the result &jpGetDocumentData will

cause the Xlib error handler to be invoked, and then will cause finish_proc to be called with a status of
XPGetDocError. Any other activities (for example, a separate process destroying the print context) that prove
fatal to the progress &pGetDocumentData will also cause finish_proc to be called with a statusPGiet-

DocError.

If XpGetDocumentData is called prior tXpStartJob, then arKPBadSequence error is generated and finish_proc

is called withXPGetDocError. If XpGetDocumentData is called afteXpStartJob and output_mode was specified
asXPSpool, then arXPBadSequence error is generated and finish_proc is called WRBetDocError. If the

producer starts generating data and the consumer cannot consume data quickly enough, then the producer’s
display connection will be blocked by tiePrint Server

Until XpEndJob or XpCancelJob is called, it is possible that vario¥BPrintNotify events will be generated (for

example, a page has been canceled). The data passed to save_proc is not necessarily organized according to
the consumer’s requests or any generated events, and its consistency is guaranteed only if the entire job com-
pletes successfully (i.e. without being canceled or generating an error). Consumers may want to select for
XPPrintNotify events and terminate save processing upon receipt of cancellation events.

When finish_proc is called, sometime ap6GetDocumentData is called and returns, status gives the com-
pletion status of the job and is defined in <X11/extensions/Print.h> as:

#define XPGetDocFinished 0 /* normal termination */
#define XPGetDocSecondConsumer 1 [* setup error */
#define XPGetDocError 2 [* progress error */

XPGetDocFinshed indicates that all intended document data has been delivered by way of save_proc. All can-
cellation events are guaranteed to have arrived by the time finished_proc is called, and they should be taken
into consideration for evaluating the validity of the document data returned.

XPGetDocSecondConsumer indicates that a consumer had already been established for the print context. The
X Print Serveonly supports one consumer per print context.

XPGetDocError indicates that an error has been generated (for exaXiBiedContext or XPBadSequence) and
that no further document data will be delivered byXHerint Serverto save_proc.

After finish_proc returns, save_proc and finish_proc are unregistered and will no longer be called.

XpGetDocumentData can generate one of the following errors:

XPBadContext The specified print context-id is not valid.

X Version 11 Release 6.4

18 X Print Service Extension Library

XPBadSequence The function was not called in the proper order with respect to the other X